Answer:
hope it helps you........
Which of the following could be an example of a function with a domain
(-∞0,00) and a range (-∞,4)? Check all that apply.
A. V = -(0.25)* - 4
-
□ B. V = − (0.25)*+4
c. V = (3)* +4
□ D. V = − (3)* — 4
-
The correct options that could be an example of a function with a domain (-∞0,00) and a range (-∞,4) are given below.Option A. V = -(0.25)x - 4 Option B. V = − (0.25)x+4
A function can be defined as a special relation where each input has exactly one output. The set of values that a function takes as input is known as the domain of the function. The set of all output values that are obtained by evaluating a function is known as the range of the function.
From the given options, only option A and option B are the functions that satisfy the condition.Both of the options are linear equations and graph of linear equation is always a straight line. By solving both of the given options, we will get the range as (-∞, 4) and domain as (-∞, 0).Hence, the correct options that could be an example of a function with a domain (-∞0,00) and a range (-∞,4) are option A and option B.
Know more about function here:
https://brainly.com/question/11624077
#SPJ8
pls help asap if you can!!!!!
Answer:
x = 24
Step-by-step explanation:
if a and b are parallel then
62 and 5x - 2 are same- side interior angles and sum to 180° , that is
5x - 2 + 62 = 180
5x + 60 = 180 ( subtract 60 from both sides )
5x = 120 ( divide both sides by 5 )
x = 24
thus for a to be parallel to b , then x = 24
which scatterplot does NOT suggest a linear relationship between x and y?
A) II only
B) III only
C) I and II only
D) II and III only
Answer:
B
Step-by-step explanation:
How many three-eighths are in three and three-fourths
♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️
\( \frac{3 \frac{3}{4} }{ \frac{3}{8} } = \frac{ \frac{12 + 3}{4} }{ \frac{3}{8} } = \frac{ \frac{15}{4} }{ \frac{3}{8} } = \frac{ \frac{15 \times 2}{4 \times 2} }{ \frac{3}{8} } = \\ \)
\( \frac{ \frac{30}{8} }{ \frac{3}{8} } = \frac{30}{8} \div \frac{3}{8} = \frac{30}{8} \times \frac{8}{3} = \frac{30}{3} = \\ \)
\(10\)
Thus there are (( 10 )) 3/8 in 3 3/4 .
♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️
Answer:
\(\frac{3}{8}\) can go into \(3\frac{3}{4}\) exactly 10 times.
Step-by-step explanation:
Convert the mixed number to an improper fraction: \(3\frac{3}{4}=\frac{15}{4}\) (found by multiplying the denominator by the coefficient and adding the numerator)Divide (multiply by the reciprocal): \(\frac{15}{4}*\frac{8}{3}=\frac{120}{12}\)Simplify: \(\frac{120}{12}=10\)Done!Hope this helps!
if you had 12.3 grams of carbohydrates, how many calories would that contribute per serving? do not round; give the absolute value.
49.2 calories are in would that contribute per serving .
What does a calorie mean ?
Energy is measured in calories. When you hear something has 100 calories, it means that it has the potential to provide your body with that many calories of energy. Calories are the units of energy used by your body during food digestion and absorption. A food's ability to give your body energy depends on how many calories it contains.Carbohydrates provide 4 calories per gram.
1 gm Carbohydrates = 4 calories
then 12.3 gm Carbohydrates = 12.3 * 4
= 49.2 calories
Learn more about calories
brainly.com/question/22374134
#SPJ4
Write an equation of the line that passes through the given point and has the given slope. (6, 4); slope -3/4
Answer:
y=-3/4x+17/2
Step-by-step explanation:
the equation for slope intercept form is y=mx+b, where m is the slope and b is the y intercept.
since we know the slope of the line, we can substitute it into the equation
y=-3/4x+b
we need to find b though.
since the equation will pass through the point (6,4) that means that if we plug it into the equation, it'll be a true statement; in this case, we can use it to solve for b.
substitute (6,4) into the equation
4=-3/4(6)+b
multiply
4=-9/2+b
17/2=b
the y intercept is 17/2
therefore the equation of the line is y=-3/4x+17/2
hope this helps :)
If a= 2 and b= -4. What is the value of -29 + 15b + 3?
1. Mike's family went out for dinner. The meals including tax cost
$69.57. If they leave a 15% tip...
a. How much is the tip?
b. How much money did they spend on dinner?
(Round to the nearest cent)
Answer:
Tip: \($10.44\)
Total: \(80.01\)
Step-by-step explanation:
\(\frac{x}{69.57} =\frac{15}{100} \)
\(\frac{100x}{100} =\frac{1043.55}{100} \\ x=10.4355\)
\(69.57+10.44=80.01\)
Maya uses 1 1/3 cups of papaya juice for every 3 1/3 cups of carrot juice to make a fruit drink.How many cups of papaya juice would Maya use for 1 cup of carrot juice?
Answer:
2/5 or 0.4 cup papaya juice per carrot juice
Can u help me pls
This homework was due last week
I really need help
thx xxx
NEED HELP!!!!!PLEASE
Answer:
Step-by-step explanation:
y = -2x + 11
What percent of 518 is 180? Round to the nearest whole #
if we take 518 to be the 100%, what is 180 off of it in percentage?
\(\begin{array}{ccll} amount&\%\\ \cline{1-2} 518&100\\ 180&x \end{array}\implies \cfrac{518}{180}=\cfrac{100}{x}\implies \cfrac{259}{90}=\cfrac{100}{x} \\\\\\ 259x=9000\implies x=\cfrac{9000}{259}\implies x\approx 35\)
A coal fired Power Plant, in rural countryside, is emitting SO
2
at the rate of 1500gm/s, from an effective stack height of 120 m. Estimate the ground level concentration 1.5Kms downwind, at a distance of 100 m left of the center-line, if the wind speed is 4 m/s (measured at 10 m ). The local atmospheric condition is Neutral. Assume that the sampling time for the above measurement is 10 minutes. [5]
When a coal fired Power Plant, in rural countryside, is emitting SO₂ at the rate of 1500gm/s, from an effective stack height of 120 m, the estimated ground level concentration of SO₂ at the specified location is 26.39 µg/\(m^3\), rounded to two decimal places.
How to estimate ground level concentrationIndustrial Source Complex (ISC) model will be used to estimate the ground level concentration of SO₂
Given parameters for the calculation:
Emission rate of SO₂ = 1500 gm/s
Effective stack height = 120 m
Distance downwind = 1.5 km
Distance perpendicular to wind direction = 100 m
Wind speed at 10 m = 4 m/s
Sampling time = 10 minutes
Atmospheric stability = Neutral
The first step is to calculate the effective stack height, and it is given as
He = H + 0.67ΔH
where H is the physical stack height and ΔH is the vertical dispersion height.
Vertical dispersion height is given as
\(\Delta H = 0.4H (1 + 0.0001UH)^(2/3)\)
where U is the wind speed at the stack height (120 m), and H is the physical stack height.
Plugin the given values
U = (4 + 0.04 × 120) m/s = 8.8 m/s
ΔH = 0.4 × 120 (1 + 0.0001 × 8.8 × 120\()^(2/3)\) = 92.6 m
He = 120 + 0.67 × 92.6 = 181.96 m
The next thing is to calculate the Pasquill-Gifford (P-G) stability class
Using the ISC model with stability class C, we can estimate the ground level concentration of SO₂ using the following formula
C = (E × Q × F × G) / (2πUσyσz)
where
C is the ground level concentration of SO₂ in µg/\(m^3\), E is the emission rate in g/s,
Q is the effective stack height in m,
F is the downwash factor,
G is the Gaussian dispersion coefficient,
U is the wind speed in m/s, and
σy and σz are the lateral and vertical dispersion coefficients in m, respectively.
Downwash factor F = 0.95
Gaussian dispersion coefficient G = 0.25
The lateral and vertical dispersion coefficients can be estimated as
\(\sigma y = 0.09 * x^(2/3) + 0.67 * x / (H + 0.67\Delta H)\\\sigma z = 0.16 * x^(2/3) + 0.67 * x / (H + 0.67\Delta H)\)
where x is the distance downwind from the source in km.
Plug in the given values
x = 1.5 km
\(\sigma y = 0.09 * (1.5)^(2/3) + 0.67 * 1.5 / (120 + 0.67 * 92.6) = 0.06 m\\\sigma z = 0.16 * (1.5)^(2/3) + 0.67 * 1.5 / (120 + 0.67 * 92.6) = 0.12 m\)
Substitute the calculated values in the formula for C
\(C = (1500 * 181.96 * 0.95 * 0.25) / (2\pi * 4 * 0.06 * 0.12) = 26.39 \mu g/m^3\)
Thus, the estimated ground level concentration of SO₂ at the specified location is 26.39 µg/\(m^3\), rounded to two decimal places.
Learn more on Power Plant on https://brainly.com/question/13960354
#SPJ4
There are integers that are not rational
numbers. (True or false)
There are whole numbers that are not rational
numbers. (True or false
There are integers that are not whole numbers.(true or false)
All rational numbers are integers. (True or false)
A number that contains both positive and negative integers, including zero, is called an integer. There are no fractional or decimal parts in it. Here are a few instances of integers: -5, 0, 1, 5, 8, 97, and 3,043
Explain about the integers?Integers, as opposed to fractions or decimals, are all whole numbers plus their antipodes. For instance, numbers include -3, -2, -1, 0, 1, 2, 3,... On a number line, positive numbers are those to the right of zero. Negative numbers are those to the left of 0
An integer, pronounced "IN-tuh-jer," is a whole number that can be positive, negative, or zero and is not a fraction. Integer examples include: -5, 1, 5, 8, 97, and 3,043.
False. An integer is a whole number.
False. For instance, 1/2 is not a whole number but is a rational number.
False. For instance, -3 is not a whole number but is an integer.
True. Rational numbers include all integers.
Answers:
False
False
False
True
To learn more about integers refer to:
https://brainly.com/question/17695139
#SPJ13
A Florida orange juice plant started producing a juice blend, it must be within 0.78 fluid ounces of the advertised 32 fluid ounces on the label. If x represents the volume, write an equation to model the maximum and minimum volumes and determine the minimum volume in a bottle.
|x - 32| = 0.78
|x + 32| = 0.78
|x - 0.78| = 32
|x + 0.78| = 32
The correct equation is:
|x - 32| = 0.78
In this case, x represents both the maximum and minimum accepted volumes.
How to writhe an equation that models the maximum and minimum volumes?We know that the mean volume is 32 fluid ounces, and the acceptable error is 0.78 fluid ounces.
Then the maximum acceptable volume is 32 + 0.78 fluid ounces, and the minimum acceptable volume is 32 - 0.78 fluid ounces.
This means that the absolute value of the difference between x, the volume, and 32, must be equal to 0.78
This is written as:
|x - 32| = 0.78
In this case, x represents both the maximum and minimum accepted volumes.
If you want to learn more about absolute value:
https://brainly.com/question/1782403
#SPJ1
please help!!! Thanks!!
Answer:
A
Step-by-step explanation:
If the temperature in Buffalo is 23 degrees Fahrenheit, what is the temperature in degrees Celsius? Use the formula: C= 5/9 F-32 Rashawn
The temperature in Buffalo when it is 23 degrees Fahrenheit is equivalent to -5 degrees Celsius.
What is Fahrenheit and Celsius?Fahrenheit is a temperature scale that was created by Gabriel Fahrenheit in 1724. Fahrenheit is used primarily in the United States and a few other countries. The boiling point of water on this scale is 212 degrees Fahrenheit, while the freezing point is 32 degrees Fahrenheit.
The Celsius scale, on the other hand, is a temperature scale that is used throughout the world. It was created in 1742 by Swedish astronomer Anders Celsius. On this scale, the boiling point of water is 100 degrees Celsius, and the freezing point is 0 degrees Celsius.
How do I convert degrees Fahrenheit to degrees Celsius?The formula for converting degrees Fahrenheit to degrees Celsius is: C=5/9(F-32). C is the equivalent Celsius temperature, while F is the equivalent Fahrenheit temperature.
Let's put the formula into practice to answer the question, "If the temperature in Buffalo is 23 degrees Fahrenheit,
What is the temperature in degrees Celsius?We can simply plug in the given value for Fahrenheit temperature, which is 23 degrees Fahrenheit.
C = (5/9) (23 - 32)C = (5/9) (-9)C = -5
Therefore, -5 degrees Celsius is equivalent to 23 degrees Fahrenheit when the temperature is in Buffalo.
To know more about Fahrenheit and degrees Celsius: https://brainly.com/question/26141817
#SPJ11
Plz help will give brainliest for brainliest!!!!!!
Answer:
1
Step-by-step explanation:
The use of
Parenthesis(1+2)=3
Exponents- none
Multipy- 2 times the 3 is 6
Divide 6/6 is 1
Add- none
Subtract- none
Answer:
9
Step-by-step explanation:
you should have search it up :)
HAVE A GREAT DAY
The table below shows a stem-and-leaf diagram for the test scores of students in Liberal Arts Math StemsLeave:s 0 1 1 348 9 3 4 How many students took the test? What is the lowest score on the test? What is the highest score on the test? l The mean score on the test is: The midrange of test scores is
To determine the number of students who took the test, we need to count the stems in the stem-and-leaf diagram. From the given diagram, we can see that there are 4 stems: 6, 7, 0, and 9. Each stem represents a ten's place value, so there are 10 students for each stem. Therefore, the total number of students who took the test is:
4 stems × 10 students per stem = 40 students
To find the lowest score on the test, we look at the smallest leaf value in the diagram, which is 1. However, since the smallest leaf value corresponds to the stem 0, we need to combine them to determine the lowest score. Therefore, the lowest score on the test is 01.
To find the highest score on the test, we look at the largest leaf value in the diagram, which is 9. Since the largest leaf value corresponds to the stem 9, the highest score on the test is 99.
The mean score on the test is calculated by adding up all the scores and dividing by the total number of students. Let's calculate it:
Mean score = (6 + 7 + 7 + 0 + 0 + 0 + 0 + 0 + 9 + 9 + 9 + 3 + 4) / 40
Mean score = 63 / 40
Mean score ≈ 1.575
The midrange of test scores is calculated by adding the lowest and highest scores and dividing by 2. Let's calculate it:
Midrange = (01 + 99) / 2
Midrange = 100 / 2
Midrange = 50
Therefore, the mean score on the test is approximately 1.575, and the midrange of test scores is 50.
Your full question was attached below
Learn more about steam and leaf plot at https://brainly.com/question/29256159
#SPJ11
Can anyone write the equation of the graph?
Answer:
use absolute value
Step-by-step explanation:
absolute of x +5
HELP HURRY PLS
What is the equation of this line?
y =2/3x
y=3/2x
y= -2/3x
y= -3/2x
Answer:
y = 2/3x
Step-by-step explanation:
mputation. Various problems with data collection can cause some observations to be missing. Suppose a data set has 20 cases. Here are the values of the variable x for 10 of these cases: IMPUTE 6 12 17 912 14 20 23 21 16 The values for the other 10 cases are missing. One way to deal with missing data is called imputation. The basic idea is that missing values are replaced, or imputed, with values that are based on an analysis of the data that are not missing. For a data set with a single variable, the usual choice of a value for imputation is the mean of the values that are not missing. The mean for this data set is 15 (a) Venify that the mean is 15 and find the standard deviation for the 10 cases for which x is not mising
Given data set has 20 cases. Here are the values of the variable x for 10 of these cases: IMPUTE 6 12 17 912 14 20 23 21 16The values for the other 10 cases are missing.
One way to deal with missing data is called imputation. The basic idea is that missing values are replaced, or imputed, with values that are based on an analysis of the data that are not missing. For a data set with a single variable, the usual choice of a value for imputation is the mean of the values that are not missing.
The mean for this data set is 15 Verify the mean: Given data set has 20 cases, of which 10 cases are given. Then the other 10 cases, for which x is not given, have the same mean, which is 15. Let's calculate the mean of the given data set. We will add up all the given values and then divide it by the total number of cases.
To know more about variable visit :
https://brainly.com/question/28873513
#SPJ11
if rx y= 0.83, then we can conclude that x and y have a relatively
If rxy = 0.83, we can conclude that x and y have a relatively strong positive linear relationship or correlation.
The correlation coefficient (r) measures the strength and direction of the linear relationship between two variables, in this case, x and y. The value of r ranges between -1 and 1. A positive value indicates a positive relationship, meaning that as one variable increases, the other variable tends to increase as well.
In this case, with rxy = 0.83, the correlation coefficient is close to 1, suggesting a strong positive linear relationship. This means that when x increases, y also tends to increase, and vice versa. The closer the value of r is to 1, the stronger the linear relationship between x and y.
It is important to note that correlation does not imply causation. While a high correlation coefficient indicates a strong linear relationship, it does not provide information about the underlying cause or direction of the relationship between the variables. Other factors and variables may influence the relationship, and further analysis may be required to understand the nature of the relationship between x and y.
To learn more about correlation click here:
brainly.com/question/16169720
#SPJ11
Rewrite the expression by combining like terms.
8 + 6r + 10 - 4r
Answers:
18 + 2r
14r - 6
14r + 6
Answer:
the answer is option A. 18 + 2r
Step-by-step explanation:
you will combine 6r + negative 4r which will give you the 2r and then you will add 8+ 10 to get the 18.
Answer:
Option A will be correct.Step-by-step explanation:
Let's combine like terms to help us simplify the expression.
8 + 6r + 10 - 4rCombining Like Terms:
=> (6r - 4r) + (8 + 10)=> (2r) + (18)Opening The Brackets:
=> 2r + 18Hence, Option A will be correct.
Hoped this helped.
\(BrainiacUser1357\)
a student takes a true-false test that has 14 questions and guesses randomly at each answer. let x be the number of questions answered correctly. find p(5) group of answer choices 0.0001 0.0611 0.1833 0.1222
The probability to answer 5 questions correctly from 14 true or false questions is 0.1222
The given situation represents a binomial experiment, where there are only two possible outcomes for each trial: success (answering correctly) and failure (answering incorrectly). To find the probability of a particular number of successes, we use the binomial probability formula:
P(x)= nCx × p^x × q^(n-x)
Where, n is the total number of trials, p is the probability of success on each trial, q is the probability of failure on each trial (1-p), and x is the number of successes desired.
n = 14 (total number of questions)
p = 1/2 (probability of answering correctly when guessing randomly), and q = 1/2 (probability of answering incorrectly when guessing randomly).
To find P(5), we substitute these values in the formula
P(5) = 14C5 * (1/2)^5 * (1/2)^9= 2002 * (1/32) * (1/512)= 2002 / 16384≈ 0.1222
Therefore, the answer is option D, 0.1222.
To learn more about Binomial experiment:https://brainly.com/question/9325204
#SPJ11
pleasse help me out with this
Answer:
2 cos (x + pi/2)
Step-by-step explanation:
Of the choices given, this looks like a cos curve that is shifted to the Left by pi / 2 and multiplied to give an amplitude of 2
Consider the following cost function. a. Find the average cost and marginal cost functions. b. Determine the average and marginal cost when x=a. c. Interpret the values obtained in part (b). C(x)=1000+0.6x,0≤x≤5000,a=1400 a. The average cost function is C
ˉ
(x)=_______
a) Cbar(x) = (1000 + 0.6x) / x b) the marginal cost function is a constant value of 0.6. c) the average cost at x = a represents the average cost per unit. It illustrates the cost effectiveness of producing each unit at that level.
How to find the the average and marginal cost when x=aWe'll start with the supplied cost function C(x) = 1000 + 0.6x to get the average and marginal cost functions.
(a) Average Cost Function:
Divide the total cost (C(x)) by the quantity to obtain the average cost function (x).
Average Cost (Cbar) = C(x) / x
Substituting the given cost function, we have:
Cbar(x) = (1000 + 0.6x) / x
(b) Marginal Cost Function:
The marginal cost is the derivative of the cost function with respect to the quantity (x).
Marginal Cost (MC) = dC(x) / dx
Differentiating the cost function, we get:
C'(x) = dC(x) / dx = 0.6
Therefore, the marginal cost function is a constant value of 0.6.
(b) Average and Marginal Cost at x = a:
For x = a = 1400, we can substitute this value into the average cost and marginal cost functions.
Average Cost at x = a:
Cbar(a) = (1000 + 0.6a) / a
Cbar(1400) = (1000 + 0.6 * 1400) / 1400
Marginal Cost at x = a:
MC(a) = 0.6
(c) Interpretation of the values obtained:
When the quantity produced is 1400, the average cost at x = a represents the average cost per unit. It illustrates the cost effectiveness of producing each unit at that level.
Learn more about marginal cost at https://brainly.com/question/17230008
#SPJ4
I need help help......
Answer:
5 DVD's
Step-by-step explanation:
So Basically It means the 25$ a month Plan is the same if you pay
5 DVD's
Ok each DVD costs 3$ and if you buy 5 of them you just bought 15 bucks worth of DVD's plus the membership which is 10$ in which the equation is
3(x)+10=25
X=5 by the way
So Basically it means if you Buy 5 DVD's plus the member ship thats the same money as the 25$ a month deal for unlimated DVD's
Simplified version: 5 DVD's
Please Help!!
Cherry Hill Orchards produced 500 tons of cherries during their first year of business, 2012. Since then, the cherry harvest continues to increase in production by 5. 7% over the previous year.
Write an exponential function, f(x), that models the tons of cherries produced by Cherry Hill Orchards x years after 2012.
Enter your answer by filling in the boxes.
f(x)= -------- * ( )^x
Answer:
\(f(x)=500*(.057)^x\)
Step-by-step explanation:
Question 3
True or False? The sum of the differences (x-x) must be zero for any
distribution consisting of n observations.
A. True
B. False
Answer: True
Step-by-step explanation:
The term inside the parentheses after the summation sign is
x-sub-i minus x-bar
x-bar is the mean average of all the individual n observations. In statistics, it is usually just called the 'mean' for short.
x-sub-i stands for each individual observation: x-sub-1, x-sub-2, and so on
So that means (x-sub-i - x-bar) means the difference we get if we do the subtraction, using x-sub-i as the first term in the subtraction.
For an illustration of this, suppose we have a sequence of 5 observations. Since there are 5 observations, n = 5.
x-sub-1 = 4
x-sub-2 = 7
x-sub-3 = 3
x-sub-4 = 11
x-sub-5 = 5
We obtain the mean by adding all the observations and then dividing by the number of observations, n.
The sum 4+7+3+11+5 = 30 and 30/5 = 6.
So the mean, x-bar, = 6.
Now let's look at all the differences between each observation and x-bar.
In the same order as the observations, we get
4 - 6 = -2
7 - 6 = 1
3 - 6 = -3
11 - 6 = 5
5 - 6 = -1
If we add up all the differences, just like we are doing in the summation homework problem, we have (-2)+1+(-3)+5+(-1) = 0.
It also works if you make x-bar the first term in the subtraction. Either way will work, as long as you are consistent about it from one subtraction to the next.
This is always the case with a mean average, so the summation is assured to be zero.
I hope this helps.