Answer:
the answer should be 27.72
Find the rule from the given table
A.Divide by 2
B.Divide by 3
C.Divide by 5
D.Divide by 6
Answer:
the answer b
Step-by-step explanation:
te answer b because I guessed
How do you solve -2 1/2+3/4÷3/8
Step-by-step explanation:
1. use PEMDAS (Parentheses, Exponent, Multiplication & Division, Addition & Subtraction). you would do 3/4 divided by 3/8 first.
3/4 / 3/8 = 2
2. add 2 to -2 1/2 (or if it's easier to understand, do 2 minus 2 1/2)
-2 1/2 + 2 = -1/2 OR 2- 2 1/2 = -1/2
answer is -1/2
{20 PTS}
4/6 = ??? x 1/6
what number makes this equation true? fill in the blank
Prove (a) B(x+1,y)= x+y
x
B(x,y). (b) Γ(2x)= π
2 2x−1
Γ(x)Γ(x+ 2
1
).
The simplified equation is (π2 / 2) * ∫[0, ∞] (x(2x-1) * e(-x) / (Γ(x) * Γ(1 - x)) DX
a. To prove B(x+1, y) = x * B(x, y), proceed as follows.
Start with B(x+1, y) = [(x+1)! * y!] / ((x+y+2)!) (using the definition of B(x, y)).
Rewrite 1 / (x+1) to (x+y+2 - (y+1)) / (x+y+2) .
Using the formula above, express B(x+1, y) as (x+y+2) / (x+y+2) * [(x+1)! to rewrite. * y!] / ((x+y+2)!) - (y+1) / (x+y+2) * [(x+1)! * y!] / ((x+y+2) !).
Simplify the formula to (x+y+2) / (x+y+2) * B(x, y) - (y+1) / (x+y+2) * B(x, y) increase.
Simplify further to B(x, y) - (y+1) / (x+y+2) * B(x, y).
Note that B(x, y) can be expressed as (x / (x+y+1)) * B(x, y) .
Substitute this formula in the previous step to get,
x * B(x, y) - (y+1) / (x+y+2) * x * B(x, y).
x * B(x, y) - (y+1) / (x+y+2) * x * B(x, y)
= x * B(x, y)
You have now proved B(x+1, y) = x * B(x, y).
b. We wish to prove the identity Γ(2x) = ((2sin(πx))) * Γ(x) * Γ(x + 1/2).
Integrate ∫[0, ∞] (x(2x-1) * Start with dx.
Evaluating this integral using the permutation u = du is obtained.
Simplify the integral to (1/2) * Γ(x + 1/2).
Express sin(πx) as π / (Γ(x) * Γ(1 - x)).
Let the original integral be π * (2(2x-1) / π) * ∫[0, ∞] (x(2x-1) * e(-x) * (1/sin( πx) Rewrite.)) DX.
Substituting the equations,
The integral, π * (2(2x-1) / π) * ∫[0, ∞] (x(2x-1) *
We get * (π / (Γ(x) * Γ(1 - x)))) dx.
For more questions on simplified equation:
https://brainly.com/question/33148611
#SPJ8
There are six pizzas there are 36 players on the team. If each member has one slice and each pizza has eight slices how much pizza in fraction form will be left over.
There will be 12 slices of pizza left over, which can be expressed as 3/2 or 1 1/2 slices in fraction form.
To find out how much pizza will be left over, we need to calculate the total number of slices available and subtract the number of slices consumed by the players.
Given that there are six pizzas and each pizza has eight slices, the total number of slices available is 6 pizzas * 8 slices/pizza = 48 slices.
Since there are 36 players on the team, and each player has one slice, the total number of slices consumed is 36 slices.
To determine the remaining slices, we subtract the consumed slices from the total available slices: 48 slices - 36 slices = 12 slices.
Therefore, there will be 12 slices of pizza left over.
To express this as a fraction, we can write it as 12/1, which simplifies to 12. This means there will be 12 whole slices of pizza left over.
If you would like to express it as a fraction in its simplest form, you can write it as 12/8. By dividing both the numerator and denominator by their greatest common divisor, which is 4, we get 3/2. So, in fraction form, there will be 3/2 or 1 1/2 slices of pizza left over.
for more questions on fraction
https://brainly.com/question/78672
#SPJ8
Determine the slope of the line passing through (-8,-5) and (-10,-9)
Answer:
2
Step-by-step explanation:
y1-y2/x1-x2
Answer:
I love algebra anyways
the ans is in the picture with the steps
(hope it helps can i plz have brainlist :D hehe)
Step-by-step explanation:
Non Shaded Shaded
Area
Area
8
Find the radius
of the small circle
Answer:
The answer is 16pi or 50.3cm² to 1 d.p
Step-by-step explanation:
The non shaded=area of shaded
d=8
r=d/2=4
A=pir³
A=p1×4²
A=pi×16
A=16picm² or 50.3cm² to 1d.p
Answer:
3.45 cm (3 s.f.)
Step-by-step explanation:
We have been given a 5-sided regular polygon inside a circumcircle. A circumcircle is a circle that passes through all the vertices of a given polygon. Therefore, the radius of the circumcircle is also the radius of the polygon.
To find the radius of a regular polygon given its side length, we can use this formula:
\(\boxed{\begin{minipage}{6 cm}\underline{Radius of a regular polygon}\\\\$r=\dfrac{s}{2\sin\left(\dfrac{180^{\circ}}{n}\right)}$\\\\\\where:\\\phantom{ww}$\bullet$ $r$ is the radius.\\ \phantom{ww}$\bullet$ $s$ is the side length.\\\phantom{ww}$\bullet$ $n$ is the number of sides.\\\end{minipage}}\)
Substitute the given side length, s = 8 cm, and the number of sides of the polygon, n = 5, into the radius formula to find an expression for the radius of the polygon (and circumcircle):
\(\begin{aligned}\implies r&=\dfrac{8}{2\sin\left(\dfrac{180^{\circ}}{5}\right)}\\\\ &=\dfrac{4}{\sin\left(36^{\circ}\right)}\\\\ \end{aligned}\)
The formulas for the area of a regular polygon and the area of a circle given their radii are:
\(\boxed{\begin{minipage}{6 cm}\underline{Area of a regular polygon}\\\\$A=\dfrac{nr^2\sin\left(\dfrac{360^{\circ}}{n}\right)}{2}$\\\\\\where:\\\phantom{ww}$\bullet$ $A$ is the area.\\\phantom{ww}$\bullet$ $r$ is the radius.\\ \phantom{ww}$\bullet$ $n$ is the number of sides.\\\end{minipage}}\)
\(\boxed{\begin{minipage}{6 cm}\underline{Area of a circle}\\\\$A=\pi r^2$\\\\where:\\\phantom{ww}$\bullet$ $A$ is the area.\\\phantom{ww}$\bullet$ $r$ is the radius.\\\end{minipage}}\)
Therefore, the area of the regular pentagon is:
\(\begin{aligned}\textsf{Area of polygon}&=\dfrac{5 \cdot \left(\dfrac{4}{\sin\left(36^{\circ}\right)}\right)^2\sin\left(\dfrac{360^{\circ}}{5}\right)}{2}\\\\&=\dfrac{5 \cdot \left(\dfrac{4}{\sin\left(36^{\circ}\right)}\right)^2\sin\left(72^{\circ}\right)}{2}\\\\&=\dfrac{\dfrac{80\sin\left(72^{\circ}\right)}{\sin^2\left(36^{\circ}\right)}}{2}\\\\&=\dfrac{40\sin\left(72^{\circ}\right)}{\sin^2\left(36^{\circ}\right)}\\\\&=110.110553...\; \sf cm^2\end{aligned}\)
The area of the circumcircle is:
\(\begin{aligned}\textsf{Area of circumcircle}&=\pi \left(\dfrac{4}{\sin\left(36^{\circ}\right)}\right)^2\\\\&=\dfrac{16\pi}{\sin^2\left(36^{\circ}\right)}\\\\&=145.489779...\; \sf cm^2\end{aligned}\)
The area of the shaded area is the area of the circumcircle less the area of the regular pentagon plus the area of the small central circle.
The area of the unshaded area is the area of the regular pentagon less the area of the small central circle.
Given the shaded area is equal to the unshaded area:
\(\begin{aligned}\textsf{Shaded area}&=\textsf{Unshaded area}\\\\\sf Area_{circumcircle}-Area_{polygon}+Area_{circle}&=\sf Area_{polygon}-Area_{circle}\\\\\sf 2\cdot Area_{circle}&=\sf 2\cdot Area_{polygon}-Area_{circumcircle}\\\\2\pi r^2&=2 \cdot \dfrac{40\sin\left(72^{\circ}\right)}{\sin^2\left(36^{\circ}\right)}-\dfrac{16\pi}{\sin^2\left(36^{\circ}\right)}\\\\2\pi r^2&=\dfrac{80\sin\left(72^{\circ}\right)}{\sin^2\left(36^{\circ}\right)}-\dfrac{16\pi}{\sin^2\left(36^{\circ}\right)}\\\\\end{aligned}\)
\(\begin{aligned}2\pi r^2&=\dfrac{80\sin\left(72^{\circ}\right)-16\pi}{\sin^2\left(36^{\circ}\right)}\\\\r^2&=\dfrac{40\sin\left(72^{\circ}\right)-8\pi}{\pi \sin^2\left(36^{\circ}\right)}\\\\r&=\sqrt{\dfrac{40\sin\left(72^{\circ}\right)-8\pi}{\pi \sin^2\left(36^{\circ}\right)}}\\\\r&=3.44874763...\sf cm\end{aligned}\)
Therefore, the radius of the small circle is 3.45 cm (3 s.f.).
Identify the property of (-12)+12=0
Answer:
the anser is 0
this is an additive inverse property.
Step-by-step explanation:
Find z1z2 if z1 = 3(cos37° + isin37°) and z2 = 2/3(cos53° + isin53°).
Answer:
\(z_{1}\cdot z_{2} = 2\cdot (\cos 90^{\circ} + i \cdot \sin 90^{\circ})\)
Step-by-step explanation:
Both variable can be rewritten into polar form:
\(z_{1} = 3\cdot e^{i\cdot 0.205\pi}\) and \(z_{2} = \frac{2}{3}\cdot e^{i\cdot 0.294\pi}\)
The complex product is equal to:
\(z_{1}\cdot z_{2} = (3)\cdot \left(\frac{2}{3}) \cdot e^{i\cdot (0.205\pi+0.294\pi)}\)
\(z_{1}\cdot z_{2} = 2 \cdot e^{i\cdot 0.499\pi}}\)
The resultant expression in rectangular form is:
\(z_{1}\cdot z_{2} = 2\cdot (\cos 90^{\circ} + i \cdot \sin 90^{\circ})\)
Answer:
The correct question is:
Find \(z_{1}.z_{2}\) if \(z_{1}= 3(cos37 + isin37)\) and \(z_{2}= \frac{2}{3} (cos53 + isin53)\).
(Note: the angles mentioned in the equations above are in degrees)
The answer is \(z_{1}.z_{2}= 2i\)
Step-by-step explanation:
\(z_{1}.z_{2}= 3(cos37 + isin37)* \frac{2}{3} (cos53 + isin53)\)
\(z_{1}.z_{2}= (3cos37 + 3isin37)* (\frac{2}{3} cos53 + \frac{2}{3}isin53)\)
\(z_{1}.z_{2}= 3cos37*\frac{2}{3} cos53 + 3cos37*\frac{2}{3}isin53+3isin37*\frac{2}{3} cos53+3isin37*\frac{2}{3}isin53\)
\(z_{1}.z_{2}= 0.961+1.275i+0.724i-0.961\) (Because \(i*i=i^{2}=-1\) & \(i=\sqrt{-1}\))
\(z_{1}.z_{2}= 0.961+1.275i+0.724i-0.961\)
\(z_{1}.z_{2}= 2i\)
Hank is running for re-election as mayor. He wants to find out if he has a good chance of being elected, however, since there are 1,500 people in his town, he doesn't have time to ask each person in town who they are voting for. He decides to take a random sample instead. Which of the following strategies would help Hank ensure a random sample? A. He could go door to door and ask 30 various people in his neighborhood. B. He could send an email to 30 city workers. C. He could ask 30 people as they enter church on Sunday. D. He could use a computer to pick 30 random addresses of people that live in the town.
Answer:
D is correct trust.
Step-by-step explanation:
I literally took the test 2 minutes ago and got that answer.
Find the slope of the line that passes through (5, 3) and (8, 2).
The slope of the line passing through the points (5, 3) and (8, 2) is -1/3.
To find the slope of the line passing through the points (5, 3) and (8, 2), we can use the formula for slope:
slope = (y2 - y1) / (x2 - x1)
Let's substitute the coordinates of the given points into the formula:
x1 = 5, y1 = 3
x2 = 8, y2 = 2
slope = (2 - 3) / (8 - 5)
Calculating the numerator and denominator:
slope = -1 / 3
Therefore, the slope of the line passing through the points (5, 3) and (8, 2) is -1/3.
Note: The slope represents the rate of change between the y-coordinates and x-coordinates of two points on a line. In this case, for every 3 units increase in the x-coordinate, the y-coordinate decreases by 1 unit.
For more questions on slope
https://brainly.com/question/16949303
#SPJ8
making the assumption of no compounding interest, suppose you purchase a perpetuity bond from sense/net corporation for $3,000 with an annual coupon rate of 3% . specify all answers to the nearest dollar, and assume a discount rate equal to that of the current interest rate.
Therefore for computing the annual return we simply fund with coupon rate in percentage is 90 dollar
What is a percent simple definition?
A percentage is a portion of a whole expressed as a number between 0 and 100 rather than as a fraction. All of something is 100 percent, half of it is fifty percent, none of something is zero percent. To determine a percentage, you divide the portion of the whole by the whole itself and multiply by 100.
The additional sum of money over the principal sum of deposit or loan is called compound interest.
The yearly return on $ 3 ,000 investment will be $90.
This can be estimated as:
Investment = $3,000
Coupon rate in percentage = 3%
The computation of yearly return can be estimated as:
= $3,000 × 3%
= $90
Therefore for computing the annual return we simply fund with coupon rate in percentage.
To learn more about coupon rate and interest follow the link:
brainly.com/question/6959763
#SPJ4
In forming a confidence interval for μ1 - μ2, only two assumptions are required: independent samples and sample sizes of at least 30.
a. True
b. False
what is 42.9 × 3.45 someone please
Answer:
148.005
Step-by-step explanation:
Step-by-step explanation
42.9 x 3.45 and you would get 148.005 I know a lot about decimals and they are my favorite math unit! so I'm technically a genius of decimals! no problem!
There are 4 contestants in a beauty pageant. How many results are possible for the first, second, and third place?
Explanation:
There are 4 choices for first place, 3 choices for second place, and 2 choices for third place. Overall, there are 4*3*2 = 24 permutations.
Joe King thinks he is "top notch" and buys a bouquet of flowers to pass out to all the ladies... The bouquet has 7 purple tulips, 9 yellow daisies and 12 pink roses. He grabs a flower from the bouquet and gives it to Anita Bath. Then Joe grabs another flower and gives it to Lois Price.
What is the probability that Anita gets a purple tulip and Lois gets a pink rose?
The probability that Anita gets a purple tulip and Lois gets a pink rose is 1/9.
How to calculate the probabilityTotal number of flowers in the bouquet = 7 purple tulips + 9 yellow daisies + 12 pink roses = 28 flowers.
P(Anita gets a purple tulip) = 7 purple tulips / 28 total flowers = 7/28 = 1/4.
P(Lois gets a pink rose) = 12 pink roses / 27 remaining flowers = 12/27 = 4/9.
P(Anita gets a purple tulip and Lois gets a pink rose) = P(Anita gets a purple tulip) * P(Lois gets a pink rose)
= (1/4) * (4/9) = 1/9.
Therefore, the probability that Anita gets a purple tulip and Lois gets a pink rose is 1/9.
Learn more about probability at https://brainly.com/question/13604758
#SPJ1
Jessie recently drove to visit her parents who live 120 miles away. On her way there her average speed was 14 miles per hour faster than on her way home (she ran into some bad weather). If Jessie spent a total of 5 hours driving, find the two rates (in mph). Round your answer to two decimal places, if needed.
Jessie's average speed to her parents' house: ____________ mph
Jessie's average speed from her parents' house: ____________ mph
Answer:
See belowStep-by-step explanation:
Let the speed on the way home was x, then the speed on the opposite direction was x + 14.
We know that:
Time = distance / speedWe are given:
Distance d = 120 miTotal time t = 5 hoursThe total time is the sum of the time spent on both directions.
Set the following equation:
120/x + 120/(x + 14) = 5120(x + 14) + 120x = 5x(x + 14)240x + 120*14 = 5x² + 70x5x² - 170x - 2980 = 0x² - 34x - 596 = 0Solve the quadratic equation to get:
x ≈ 46.75 mphJessie's average speed from her parents' house:
46.75 mphJessie's average speed to her parents' house:
46.75 + 14 = 60.75 mphThe sum of four consecutive numbers is thirty-two. Find the largest number. (show work)
9.5 is the largest number
Consecutive numbers are the number will follow each other in order.
The difference between every two numbers is one. if n is the number so, the consecutive number will be n+1,n+2 , . . . . . .
Let four consecutive numbers be a , a+1 , a+2 , a+3
where a+3 will be largest number
Given the sum of these is 32
a + a +1 +a + 2 + a +3 = 32
=> 4a + 6 = 32
=>4a = 26
=> a= 26/4
=> a = 6.5
putting the values,
consecutive number will be = 6.5 , 7.5 , 8.5 , and 9.5
9.5 is the largest number
To more about consecutive numbers here
https://brainly.com/question/2493629
#SPJ1
A baseball player has a batting average of 0.26. What is the probability that he has exactly 6 hits in his next 7 at bats
Answer:
0.0016
Step-by-step explanation:
Batting average, p = 0.26
n = 7
x = 6
With p = 0.26 as success rate
1-p is equal to failure rate which is = 0.74
We have to solve this by using the binomial distribution formula.
P(X= x)
= nCx * p^x * (1-p)^(n-x)
P(X = 6)
=7C6 × 0.26^6 ×(1-0.26)^(7-6)
= 7 × 0.0003089 × 0..74¹
= 0.0016
So probability that he has exactly 6 hits in his next 7 bats is equal to 0.0016.
Please help guys I need it
Answer:
a= 20
b= 169.7
c= 29.71
Step-by-step explanation:
The formula of a triangle is (h*b)/2
a= (5*8)/2
b= to find the height, you can use the pythagorean theorem 18^2 - 6^2 = square root of 288. Which is 12root 2 or 16.97. (16.97*20)/2
c= using the pythagorean theorem- 11^2 = 7^2 - c^2 = square root 73, or 6root 2, or 8.49. (8.49* 7)/2
ZABC and ZQRS are supplementary angles.
If the measure of ZABC = 41°, what is the
measure of ZQRS?
MZQRS = [?]
Answer:
Solution given:
<ABC+<QRS=180° (supplementary)
m<QRS=180°-41°=139° is your answer
How long will it take $5500 to grow to $7400 at an interest rate of 5% it the interest is compounded continuouslyRound the number of years to the
nearest hundredth
see score
Answer:
5.93 years
Step-by-step explanation:
The continuous compounding formula tells you the amount after t years will be ...
A = Pe^(rt) . . . . principal P compounded continuously at annual rate r for t years
7400 = 5500e^(0.05t)
ln(7400/5500) = 0.05t . . . . divide by 5500, take natural logs
t = 20×ln(74/55) ≈ 5.93
It will take about 5.93 years for $5500 to grow to $7400.
SCL1501 ASSIGNMENT 1 2023_0 X + 20kay/Documents/2023%20assessments/SCL 1501%20ASSIGNMENT%201%202023_0adc3afa3db59caacea862 QUESTION 5 Jane Doe purchased a Range Rover last week for R790 500 (VAT incl). While driving from the Dube Port area along the N2 Road in Durban, she collides with John Wick, who is the owner-driver of a Porshe Cayenne. Doeriş is 23% negligent, whereas Wick is 33% negligent. The damage to the Range Rover is estimated at R175 000.00. It is uneconomical to repair the Porsche, but its salvage value is R125 000.00. The pre-accident value of Porsche was R985 000.00. Regarding the damages to Doe and Wick's motor vehicles, calculate who must pay whom and what would be the amount in damages. (4)
Dοe must pay Wick R506 398.00 - R71 872.50 = R434 525.50 in damages.
What is the basic mathematical οperatiοns?The fοur basic mathematical οperatiοns are Additiοn, subtractiοn, multiplicatiοn, and divisiοn.
Tο calculate the damages, we need tο find οut the prοpοrtiοn οf negligence fοr each driver and apply it tο the damages.
Let D represent Dοe and W represent Wick.
Dοe's negligence = 23%
Wick's negligence = 33%
Tοtal negligence = 23% + 33% = 56%
Therefοre, Dοe is 23%/56% = 0.4107 οr 41.07% liable, and Wick is 33%/56% = 0.5893 οr 58.93% liable.
Damage tο Range Rοver = R175 000
Dοe's liability = 41.07% οf R175 000 = R71 872.50
Wick's liability = 58.93% οf R175 000 = R103 127.50
Salvage value οf Pοrsche = R125 000
Pre-accident value οf Pοrsche = R985 000
Lοss οf value οf Pοrsche = R985 000 - R125 000 = R860 000
Wick's liability fοr lοss οf value = 58.93% οf R860 000 = R506 398.00
Therefοre, Dοe must pay Wick R506 398.00 - R71 872.50 = R434 525.50 in damages.
To learn more about basic mathematical operations, Visit
https://brainly.com/question/20628271
#SPJ1
SOMEONE ANYONE PLEASE HELP!!!
The graph of g(x) is obtained from the graph of f(x) by the following transformations:
- A horizontal stretch by a factor of 9. This is because the graph of g(x) is 9 times wider than the graph of f(x).
- A vertical translation down by 2 units. This is because the graph of g(x) is 2 units lower than the graph of f(x).
In other words, to obtain the graph of g(x) from the graph of f(x), we stretch the graph horizontally by a factor of 9 and then translate it down by 2 units.
Here is a more detailed explanation of the transformations:
- Horizontal stretch by a factor of 9: To stretch the graph horizontally by a factor of 9, we multiply all of the x-coordinates by 9. This means that every point on the graph of f(x) will be moved 9 units to the right on the graph of g(x).
- Vertical translation down by 2 units: To translate the graph down by 2 units, we subtract 2 from all of the y-coordinates. This means that every point on the graph of f(x) will be moved 2 units down on the graph of g(x).
A certain insecticide kills 70% of all insects in laboratory experiments. A sample of 11 insects is exposed to the insecticide in a particular experiment. What is the probability that exactly 2 insects will survive? Round your answer to four decimal places.
Based on the given data, the probability that exactly 2 insects will survive is 0.1402 rounded to four decimal places.
Calculating the Probability of Survival in an Insect Population Exposed to InsecticideThe probability mass function for the binomial distribution is given by:
P(X=k) = (n choose k) * p^k * (1-p)^(n-k)
where X is the random variable representing the number of successes (surviving insects), k is the specific number of successes we're interested in (k=2 in this case), n is the total number of trials (n=11), p is the probability of success (p=0.3), and (n choose k) is the binomial coefficient, which is the number of ways to choose k objects from a set of n objects.
Plugging in the values, we get:
P(X=2) = (11 choose 2) * 0.3² * 0.7²
= (55) * 0.09 * 0.02825
= 0.1402
Therefore, the probability that exactly 2 insects will survive is 0.1402 (rounded to four decimal places).
To know more about probability, visit:https://brainly.com/question/30034780
#SPJ1
When factoring a polynomial in the form ax2 + bx + c, where a, b, and c are positive real numbers, should the signs in the binomials be both positive, negative, or one of each? Create an example to verify your claim.
When factoring a polynomial in the form ax2 + bx + c, where a, b, and c are positive real numbers, the signs in the binomials should be both positive
What are quadratic equations?Quadratic equations are second-order polynomial equations and they have the form y = ax^2 + bx + c or y = a(x - h)^2 + k
How to determine the true statement?The form of the polynomial is given as:
ax2 + bx + c
Where a, b, and c are positive real numbers.
Since a, b, and c are positive real numbers. then the form of the expansion would be:
ax2 + bx + c = (dx + e)(fx + g)
Example to verify the claimTake for instance, we have the following quadratic equation
x^2 + 6x + 8
Expand the equation
x^2 + 6x + 8 = x^2 + 4x + 2x + 8
Factorize the equation
x^2 + 6x + 8 = (x + 2)(x + 4)
Hence, the signs in the binomials should be both positive
Read more about polynomials at:
https://brainly.com/question/4142886
#SPJ1
A
X
Find the value of x.
D
X+2
x = [?]
B
3
E
2
C
Answer:
x = 4
Step-by-step explanation:
if a line is parallel to a side of a triangle and it intersects the other two sides then id divides those sides proportionally.
DE is such a line , then
\(\frac{BD}{AD}\) = \(\frac{BE}{EC}\) ( substitute values )
\(\frac{x+2}{x}\) = \(\frac{3}{2}\) ( cross- multiply )
3x = 2(x + 2)
3x = 2x + 4 ( subtract 2x from both sides )
x = 4
Round off the following numbers to 2 significant figures.
156
Answer:
your answer would be 160
Joyce saved $220 on an item that was 75% off what was the original price
Answer:
$880
Step-by-step explanation:
Use the equation:
\(P=(1-d)x\) with d being the discount in a decimal form, and P being the price that was bought at.
220=(1-0.75)x
simplify parenthesis terms
220=0.25x
divide both sides by 0.25
880=x
So, the original price was $880.
Hope this helps! :)
find “h” if r=5 and V=100π
Answer:
Step-by-step explanation:
V = π.\(r^{2}\).h
100π = π.\((5)^{2}\).h
h = 4
Answer:
4
Step-by-step explanation:
The equation for the volume of a cylinder is \(V=\pi r^{2} h\). So if V is 100\(\pi\), it means that \(\pi hr^{2}\) is \(100\pi\). So the you plug in the information you know \(25h\pi =100\pi\). The pi cancels out and you end up with \(25h=100\) meaning that h=4