The magnitude of the resultant force is 84.85 pounds and the direction angle is S61.2°E.
To calculate the magnitude of the resultant force, we will use the Pythagorean Theorem. The formula is a2 + b2 = c2, where a and b are the magnitudes of the two forces, and c is the magnitude of the resultant force. We are given the magnitudes of the two forces, so we plug in the values to get 702 + 502 = c2. We solve for c by taking the square root of both sides, which gives us the magnitude of the resultant force, 84.85 pounds.Next, we need to calculate the direction angle of the resultant force. We will use the Law of Cosines. The formula is c2 = a2 + b2 - 2abcosC, where C is the angle between the two forces. We plug in our values to get 842 = 702 + 502 - 2(70)(50)cosC, and solve for cosC. We then take the inverse cosine of both sides to get the angle C, which is S61.2°E. The direction angle of the resultant force is S61.2°E.
To calculate the magnitude of the resultant force:
a = 70 pounds
b = 50 pounds
\(a2 + b2 = c2\)
702 + 502 = c2
4900 + 2500 = c2
7400 = c2
c = √7400
c ≈ 84.85 pounds
So the magnitude of the resultant force is approximately 84.85 pounds.
To calculate the direction angle of the resultant force:
c2 = a2 + b2 - 2abcosC
842 = 702 + 502 - 2(70)(50)cosC
7400 - 4900 - 2500 = - 140000cosC
cosC = -2400/-140000
cosC ≈ 0.017143
C = \(cos^-1(0.017143)\)
C ≈ 88.8°
The angle between the two forces is 88.8°. However, we need to find the direction angle of the resultant force, which is the angle between the resultant force and the positive x-axis. To do this, we subtract the angle between the two forces from 180°:
180° - 88.8° = 91.2°
So the direction angle of the resultant force is S91.2°E (south 91.2 degrees east).
Learn more about angle here
https://brainly.com/question/28451077
#SPJ1
On average, Nathaniel drinks
4/5 of a 10-ounce glass of water in
2 2/5
hours. How many glasses of water does he drink in one hour? Enter your answer as a whole number, proper fraction, or mixed number in simplest form.
Nathaniel drinks 3 glasses of water in one hour.
To find out how many glasses of water Nathaniel drinks in one hour, we need to calculate his drinking rate per hour.
In 2 2/5 hours, Nathaniel drinks 4/5 of a 10-ounce glass of water.
Let's convert the mixed number of hours to an improper fraction:
\(2\frac{2}{5} = \frac{(5 \times2 + 2)}{5}\)
\(=\frac{12}{5}\)
Now, we can set up a proportion to find his drinking rate per hour.
We know that \(\frac{12}{5}\) hours corresponds to \(\frac{4}{5}\) of a glass of water.
Let's assign "x" as the number of glasses he drinks in one hour.
The proportion is then
\(\frac{(\frac{12}{5} hours) }{(x glasses) } =\frac{(\frac{4}{5} glass)}{(1 hour)}\)
Cross-multiplying gives us
\((\frac{12}{5} )\times1=\frac{4}{5}\times(x)\)
Simplifying, we get
\(\frac{12}{5} =\frac{4}{5}\times x\)
Dividing both sides by \(\frac{4}{5}\), we find x:
\(x=\frac{(\frac{12}{5} )}{\frac{4}{5} }\)
\(x=\frac{12}{4}\)
\(x = 3.\)
Therefore, Nathaniel drinks 3 glasses of water in one hour.
For such more such question on glasses
https://brainly.com/question/11980886
#SPJ8
find the third, fourth, and fifth terms of the sequence defined by
a1 = 1, a2 = 3,
and
an = (−1)nan − 1 + an − 2
for
n ≥ 3.
The third term (a3) of the sequence is -8, the fourth term (a4) is 35, and the fifth term (a5) is -183. These values are obtained by applying the given formula recursively and substituting the previous terms accordingly. The calculations follow a specific pattern and are derived using the provided formula.
The sequence is defined by the following formula:
a1 = 1, a2 = 3,
and
an = (-1)nan - 1 + an - 2 for n ≥ 3.
To find the third term (a3), we substitute n = 3 into the formula:
a3 = (-1)(3)(a3 - 1) + a3 - 2.
Next, we simplify the equation:
a3 = -3(a2) + a1.
Since we know a1 = 1 and a2 = 3, we substitute these values into the equation:
a3 = -3(3) + 1.
Simplifying further:
a3 = -9 + 1.
Therefore, the third term (a3) is equal to -8.
To find the fourth term (a4), we substitute n = 4 into the formula:
a4 = (-1)(4)(a4 - 1) + a4 - 2.
Simplifying the equation:
a4 = -4(a3) + a2.
Since we know a2 = 3 and a3 = -8, we substitute these values into the equation:
a4 = -4(-8) + 3.
Simplifying further:
a4 = 32 + 3.
Therefore, the fourth term (a4) is equal to 35.
To find the fifth term (a5), we substitute n = 5 into the formula:
a5 = (-1)(5)(a5 - 1) + a5 - 2.
Simplifying the equation:
a5 = -5(a4) + a3.
Since we know a4 = 35 and a3 = -8, we substitute these values into the equation:
a5 = -5(35) + (-8).
Simplifying further:
a5 = -175 - 8.
Therefore, the fifth term (a5) is equal to -183.
In summary, the third term (a3) is -8, the fourth term (a4) is 35, and the fifth term (a5) is -183.
For more such questions sequence,Click on
brainly.com/question/7882626
#SPJ8
Find the LCM of A= 3^2 x 5^4 x 7 and B= 3^4 x 5^3 x 7 x11
The LCM of A = 3² × 5⁴ × 7 and B = 3⁴ × 5³ × 7 × 11 is 3898125 using Prime factorization.
Given are two numbers which are showed in the prime factorized form.
A = 3² × 5⁴ × 7
B = 3⁴ × 5³ × 7 × 11
Prime factorization is the factorization of a number in terms of prime numbers.
In order to find the LCM of these two numbers, we have to first match the common primes and write down vertically when possible and then bring down the primes in each column.
A = 3² × 5³ × 5 × 7
B = 3² × 3² × 5³ × 7 × 11
Bring down the primes in each column.
LCM = 3² × 3² × 5³ × 5 × 7 × 11
= 3898125
Hence the LCM is 3898125.
Learn more about LCM here :
https://brainly.com/question/6756370
#SPJ1
a seceret agent sent a messinger to deliver a package to a certain location. The messanger posed as a regular person out for a walk with a secret pacage tucked securely in a hidden pocket
Answer:
Don't be a secret agent. You never know what's going to happen.
Step-by-step explanation:
Until he slipped on a puddle of goose poop. His hat flew off, revealing a shiny, bald head, which he immediately grabbed his scarf to cover. In his rush, he failed to notice a goose prodding at the secret package in his pocket. With a flurry of wingbeats, the goose flew off with the secret package in its beak. The secret agent suddenly realized that the goose was a spy in disguise from a rival organization.
You draw one card from a 52-card deck. Then the card is replaced in the deck and the deck is shuffled, and you draw again. Find the probability of drawing a six the first time and a spade the second time
Answer:
1/4(1/4)=1/16, or 6.25% chance.
Step-by-step explanation:
There are 13 spades in a deck of 52 cards. This is a 13/52, or 1/4 chance of selecting one. As the cards are replaced we just multiply the probabilities of picking a spade.
I hope this helps!
x + 121 = 4x - 20 what is x
Answer:
x = 47
Step-by-step explanation:
x + 121 = 4x - 20
-3x + 121 = - 20
-3x = -141
x = 47
So, the answer is x = 47
HELP PLEASE I honestly need help please help
9514 1404 393
Answer:
5. x = 160; y = 20
6. h = 125°; g = i = 55°
Step-by-step explanation:
Vertical angles are found on opposite sides of a point where lines cross. Each angle is formed from rays opposite those of the other angle. Vertical angles are congruent.
5. x° and 160° are vertical angles: x° = 160°
y° and 20° are vertical angles: y° = 20°
__
6. h° and 125° are vertical angles: h° = 125°
The angles g° and 125° form a "linear pair" so total 180°.
g° = 180° -125° = 55°
g° and i° are vertical angles: g° = i° = 55°
Pls help pls pls help me pls pls help pls
Answer:
D should be the answer because the rate of Mason and Evan is 3 pages per a minute because three goes into both like so 30÷10=3 and 12÷4=3. Which is why D is your answer.
find m+n
pls help !!!
Answer:
m + n = 140===============
GivenTwo parallel lines,Included triangle between the parallel lines,Two interior angles of the triangle are m and n,Another angle of 40°.To find The sum of angles m and nSolutionAs per given, the missing interior angle is corresponding with 40° angle.
Since corresponding angles are equal, the third interior angle of the triangle is 40°.
Sum of three interior angles is 180°:
m + n + 40 = 180m + n = 180 - 40m + n = 140Apply angle sum property
m+n+40=180m+n=180-40m+n=140The answer is 140
A rectangular paperboard measuring 20in long and 12in wide has a semicircle cut out of it, as shown below. What is the perimeter of the paperboard that remains after the semicircle is removed? (Use the value 3.14 for pi , and do not round your answer. Be sure to include the correct unit in your answer.)
A semicircle has been cut out of a rectangular paperboard that is 20 inches long and 12 inches broad, as seen below. After the semicircle is taken out, the paperboard's remaining perimeter is 34.58 inches.
The paperboard has a length of 20 inches and a width of 12 inches. A semicircle is cut out of it, which means we need to find the perimeter of the remaining part.
The diameter of the semicircle is equal to the width of the paperboard, which is 12 inches. So, the radius of the semicircle is half of the diameter, which is 6 inches.
The perimeter of the remaining part will be the sum of the length of the paperboard and the two straight sides of the semicircle.
The length of the paperboard is 20 inches, and the two straight sides of the semicircle are equal to the diameter of the semicircle, which is 12 inches. So, the perimeter of the remaining part is:
P = 20 + 12 + 12 = 44 inches
However, we also need to subtract the length of the curved part of the semicircle from the perimeter. The length of the semicircle can be found using the formula:
C = πr
where C is the circumference of the semicircle and r is the radius.
Since we have a semicircle, we need to divide the circumference by 2. So, the length of the curved part of the semicircle is:
C/2 = (π x 6) / 2 = 9.42 inches (rounded to two decimal places)
Therefore, the perimeter of the remaining part is:
P = 44 - 9.42 = 34.58 inches (rounded to two decimal places)
So, the perimeter of the remaining paperboard is 34.58 inches.
To learn more about perimeter, refer:-
https://brainly.com/question/6465134
#SPJ1
sequence three missing terms to comple 7444> →→19-
To complete the sequence "7444> →→19-", we need to find the missing terms that fit the pattern established by the given numbers. Let's analyze the sequence and identify any discernible pattern or rule.
Looking at the sequence, we can observe that each number is decreasing by a certain value. In this case, the first number is 7444, and the second number is 19, indicating a decrease of 7425. Now, we need to continue this pattern.
To find the third missing term, we subtract 7425 from 19, resulting in -7406. Therefore, the third missing term is -7406
To find the fourth missing term, we subtract 7425 from -7406, resulting in -14831. Therefore, the fourth missing term is -14831.
To find the fifth missing term, we subtract 7425 from -14831, resulting in -22256. Therefore, the fifth missing term is -22256.
Therefore, the completed sequence is:
7444> →→19- → -7406 → -14831 → -22256
Each term in the sequence is obtained by subtracting 7425 from the previous term.
It's important to note that this solution assumes a linear pattern in which the same subtraction value is applied to each term. However, without additional context or information about the sequence, there could be alternative patterns or interpretations.
For more such questions on sequence.
https://brainly.com/question/7882626
#SPJ8
help me out draw this with equation and everything please. it can be anything
Parent function 1. Square 2. Absolute value 3.Cubic function.
4 Identity function 5 Square root 6. Cubic root
1/3x+ 1/3y=–9/5
in standard form
helpp
What is 1+57327392393629323
Answer:
57327392393629324
Step-by-step explanation:
Lena is reading a book. The product of the two page numbers facing each other is 5852. What is the sum of the two pages?
Answer:
first page is 12, and the facing page is 13.
Step-by-step explanation:
The pages are facing each other, so they are consecutive numbers:
Let x = the first page number
y = the second page number
The second page number is just 1 more than the first, because they are consecutive numbers:
x+1 = y
We also know that the products of the numbers is equal to 156:
xy = 5852
Now we will sub y = x+1 into the second equation:
x(x+1) = 5852
x^2 + x = 5852
x^2 + x - 5852 = 0
Factoring (or using the quadratic formula) gives us:
(x+13)(x-12) = 0
x = - 13, or x = 12.
A page number can't be negative, so we will choose x=12.
This means that the second page must be page 13.
789342 x 152387 x 69248
If annual interest rate is 8.25% on 90,900.00 What is my interest for 1/2 a month. It's for 8 years.
To calculate the interest for 1/2 a month over a period of 8 years, we first need to calculate the total number of months in 8 years:
Total number of months = 8 years x 12 months/year = 96 months
Next, we can calculate the interest for half a month:
Interest = Principal x Rate x Time
Where:
- Principal = $90,900.00
- Rate = 8.25% (annual interest rate)
- Time = 0.5/12 years (half a month, expressed in years)
Rate needs to be converted to a monthly rate, so we divide it by 12:
Rate = 8.25% / 12 = 0.6875% (monthly interest rate)
Time needs to be expressed in years, so we divide it by 12:
Time = 0.5/12 years
Now we can calculate the interest:
Interest = $90,900.00 x 0.006875 x 0.0416667
Interest = $25.08 (rounded to the nearest cent)
Therefore, the interest for 1/2 a month on a principal of $90,900.00 with an annual interest rate of 8.25% over a period of 8 years is $25.08.
Answer:
The interest for 1/2 month is $312.47, and the total interest for 8 years is $30, 032.64
Step-by-step explanation:
Make a plan:
Monthly Interest Rate: 8.25% / 12 = 0.006875Interest for 1/2 month is 90900 * 0.006875 * 0.5 = 312.46875Total Interest for 8 years is 312.46875 * 8 * 12 = 30032.64Solve the problem:The monthly Interest Rate is 8.25% / 12 = 0.006875 (Ground Truth)Interest for 1/2 month is 90900 * 0.006875 * 0.5 = 312.46875 (ground truth).Total Interest for 8 years is 312.46875 * 8 * 12 = 30032.64 (ground truth).Draw the conclusion:
The interest for 1/2 month is $312.47, and the total interest for 8 years is $30, 032.64Hope this helps!
ab-c/d has a value of 24. write the values if :-
1- a, b, c, d are all positive.
2- a, b, c, d are all negative.
3- a, b, c, d are mixed of negative and positive.
WRITE ANSWERS FOR 1, 2 AND 3
The values of ab, b - c, and c/d are 6, -1, and 4 respectively when a = 2, b = 3, c = 4 and d = 1.Using BODMAS rule, we can simplify the given expression.ab - c/d = 24
Given ab-c/d has a value of 24.Now, we have to find the value ofab, b - c, and c/d.Multiplying d on both sides, we getd(ab - c/d) = 24dab - c = 24d...(1)Now, we can find the value of ab, b - c, and c/d by substituting different values of a, b, c and d.Value of ab when a = 2, b = 3, c = 4 and d = 1ab = a * b = 2 * 3 = 6.
Value of b - c when a = 2, b = 3, c = 4 and d = 1b - c = 3 - 4 = -1Value of c/d when a = 2, b = 3, c = 4 and d = 1c/d = 4/1 = 4Putting these values in equation (1), we get6d - 4 = 24dSimplifying, we get-18d = -4d = 2/9
For more such questions on BODMAS rule
https://brainly.com/question/28832666
#SPJ8
Please help it’s URGENT!
The least common denominator needed to solve the equation is given as follows:
D. x(x - 3).
How to obtain the least common denominator?The equation in this problem is given as follows:
1/x + 2/(x - 3) = 5.
The denominators of each expression are given as follows:
x.x - 3.x and x - 3 are not factors of each other, hence we multiply them and the least common denominator needed to solve the equation is given as follows:
D. x(x - 3).
More can be learned about least common denominator at https://brainly.com/question/19249494
#SPJ1
f(x)=x^2. What is g(x)?
Answer:
D, g(x) = 1/4 x^2
Step-by-step explanation:
You can try plugging in the x and y values into each equation. The answer to this would be D, where if you plug in 2 as the x value, you get 1/4 * 4 which equals 1. This also makes sense because 2x would have a narrower curve while 1/2x would have a wider curve.
A birthday celebration meal is $49.20 including tax, but not the tip. Find the total cost if a 15% tip is added to the cost of the meal.
Answer:
$7.38
Step-by-step explanation:
multiply 49.20 by 15 percent.
Question 3
0.5 pts
Jim wants to buy a computer. The total cost is $947. If he can save $60 a month, how
long will it take for him to save up for the computer? Round UP to the next whole
number of months!!
Question 4
1 pts
Justin wants to borrow $18,091 to buy a used car. He examined his budget and
decided that he can afford a payment of $400 per month. If his bank offers him an
SHA
Which of the following conclusions do you draw if the p-value is not small enough to convincingly rule out chance?
a. We cannot reject the null hypothesis.
b. We accept the null hypothesis.
c. We are convinced that chance alone produced the observed results.
d. We accept the alternative hypothesis.
The conclusion is option A, we cannot reject the null hypothesis.
What is hypothesis?An assumption or concept is given as a hypothesis for the purpose of debating it and testing if it might be true.
The null hypothesis cannot be rejected for the entire population if your sample is not sufficiently incompatible with it, which can be determined if your P value is small enough.
Therefore, we can not reject the hypothesis.
To learn more about the hypothesis;
https://brainly.com/question/29519577
#SPJ1
What is the value of x and y
The value of x and y is 15 and 6 respectively.
What is a triangle?A triangle is a geometric figure with three edges, three angles and three vertices. It is a basic figure in geometry.
The sum of angle of a triangle is always 180°
In the given triangle ABC,
∠ A = 86°, ∠ B= 4x-7 and ∠C=7y-1 ,
The exterior angle is ∠C'= 9x-4
Use the external angle property,
86+4x-7=9x+4
5x=75
x=15
∠ B = 4x-7 = 53
Since, the sum of angles of a triangle is 180,
∠ A + ∠ B +∠ C = 180
86+53+7y-1=180
7y=180-138
7y=42
y=6
The value of x is 15 and the value of y is 6.
To know more about Triangle on:
https://brainly.com/question/2773823
#SPJ1
Paul and four of his staff decide to go to lunch to discuss the new project. Between them they order 8 drinks, and 6 lunch specials. Paul pays for all the drinks. They split the cost for the lunch specials and a $37 tip. Write an algebraic expression that represents the amount that Paul has to pay if a drink costs d dollars and a lunch special is on sale for m dollars.Simplify the expression completely.List the terms in your expression.For each term, identify the coefficient and variable.
Step 1
Given;
\(\begin{gathered} Paul\text{ and 4 of his staff went for lunch} \\ Paul\text{ paid for all drinks} \\ They\text{ order 8 drinks and 6 lunch special with a \$37 tip} \\ Each\text{ drink cost \$d } \\ Lunch\text{ special \$m} \end{gathered}\)Step 2
Total amount spent on drinks
\(\text{ \$}8d\)Total amount spent on lunch specials
\(\text{ \$6m}\)The total amount spent by 5 of them will be;
\(\text{ \$8d+\$6m+\$37}\)If the bill was split between them but paul paid for all the drinks. Paul wil pay;
\(\begin{gathered} \text{ \$\lparen8d+}\frac{6m+37}{5}) \\ =\operatorname{\$}\operatorname{\lparen}\text{8d+}\frac{6m}{5}+\frac{37}{5})=\text{ \$\lparen8d+1.20m+7.40\rparen} \end{gathered}\)An algebraic expression that represents the amount that Paul has to pay
is;
\(\text{ \$\lparen}8d+1.20m+7.40)\)The terms of the expression are;
\(\begin{gathered} 8d,1.20m\text{ and 7.40} \\ For\text{ 8d-\lparen coefficient=8, variable=d\rparen} \\ For\text{ 1.20m-\lparen coefficient=1.20, variable=m\rparen} \\ For\text{ 7.40-\lparen it is a constant\rparen} \end{gathered}\)Type the correct answer in the box. Use numerals instead of words. If necessary, use / for the fraction bar. is parallel to , and is perpendicular to . The number of 90° angles formed by the intersections of and the two parallel lines and is .
Answer:
The question is not complete, below is a complete question with the accompanying diagram:
Instructions: Type the correct answer in the box. Use numerals instead of words. If necessary, use / for the fraction bar.
AB is parallel to CD, and EF is perpendicular to AB
The number of 90° angles formed by the intersections of Ef and the two parallel lines AB and CD is ____
Answer:
The number of 90° angle formed = 8 angles
Step-by-step explanation:
From the question and attached diagram, the following information is given:
AB is parallel to CD
EF is perpendicular to AB
Required: number of 90° angles formed by the intersection of the perpendicular line and the parallel lines.
Note, the angle formed between a line and a perpendicular line = 90°
From the diagram:
Number of 90° angle formed by intersection of perpendicular line EF and line AB = ∠1, ∠2, ∠3 and ∠4 = 4 angles
Number of 90° angle formed by intersection of perpendicular line EF and line CD = ∠5, ∠6, ∠7 and ∠8 = 4 angles
Total 90° angles formed by perpendicular line with lines = ∠1, ∠2, ∠3, ∠4, ∠5, ∠6, ∠7, and ∠8 = 8 angles
can someone help me with this question thank you
Answer:
7
Step-by-step explanation:
a2+b2+c2
4^2+6^2= c2
16+36=52
C=52
√52=7
C=7
Answer:
7
Step-by-step explanation:
This is a right triangle so we can find the value of c using the pythagoras' teorem
c^2 = a^2 + b^2
c^2 = 4^2 + 6^2
c^2 = 52
c = 7 approximately
Which equation justifies why ten to the one third power equals the cube root of ten?
ten to the one third power all raised to the third power equals ten to the one third plus three power equals ten
ten to the one third power all raised to the third power equals ten to the one third times three power equals ten
ten to the one third power all raised to the third power equals ten to the three minus one third power equals ten
ten to the one third power all raised to the third power equals ten to the one third minus three power equals ten
The equation that justifies ten to the one third power equals the cube root of ten is ten to the one third power all raised to the third power equals ten to the one third times three power equals ten. Option B
How to justify the powerwe are to find \(10^{\frac{1}{3} } = \sqrt[3]{10}\)
The justification has to be done with the use of the properties of powers as well as roots.
\(a^\frac{m}{n} = \sqrt[n]{a^m}\)
then we would have:
\(\sqrt[3]{10} = \sqrt[3]{10^1} =10^\frac{1}{3}\)
then we would have
\((10^\frac{1}{3} )^3\\\\= 10^\frac{3}{3}\)
= 10
Read more on powers and cube roots herehttps://brainly.com/question/12859104
#SPJ1
1 yard in 6 minutes
Question 1
Part A
Find the unit rate.
Enter the correct answer in the box.
Answer: 0.166666667 yards OR 0.1524 meters OR 0.5 feet
Step-by-step explanation:
1 / 6 = 0.166666667 yards
1 yard = 0.9144 meters
0.9144 / 6 = 0.1524 meters
1 yard = 3 feet
3 / 6 = 0.5 feet
Mr. Chand is one of the landlords of his town. He buys a land for his daughter spanning over a
area of 480m². He fences the dimensions of the land measuring (x+12) mx (x+16) m. Now he
plans to erect a house with a beautiful garden in the ratio 5:3 respectively. A total of Rs. 5,00,000 is estimated as the budget for the expenses.
1)Give the area of the land purchased in linear polynomial form using algebraic expression
2)Mr. Chand's daughter is ready to share 3/5" of the expenses by her earnings. Express the
fraction in amount.
3)Can you solve the linear equation/polynomial of the area into different factors?
The required answers are 1) \($$A = x^2 + 28x + 192$$\) 2) 300000 3) \($$x^2 + 28x + 192 = (x + 14 - 2\sqrt{19})(x + 14 + 2\sqrt{19})$$\).
How to deal with area and fractions?area of the land purchased is given as 480m², and the dimensions of the land are (x+12)mx(x+16)m. Therefore, the area of the land can be expressed as:
\($$A = (x+12)(x+16)$$\)
Expanding this expression, we get:
\($$A = x^2 + 28x + 192$$\)
Hence, the area of the land purchased is given by the polynomial expression \($x^2 + 28x + 192$\).
The total budget for the expenses is Rs. 5,00,000. If Mr. Chand's daughter is ready to share 3/5 of the expenses, then the fraction of the expenses she will pay is:
\($\frac{3}{5}=\frac{x}{500000}$$\)
Simplifying this expression, we get:
\($x = \frac{3}{5}\times 500000 = 300000$$\)
Therefore, Mr. Chand's daughter will pay Rs. 3,00,000 towards the expenses.
We can solve the polynomial \($x^2 + 28x + 192$\) into different factors by using the quadratic formula:
\($x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$\)
Here, the coefficients of the polynomial are:
\($$a = 1, \quad b = 28, \quad c = 192$$\)
Substituting these values in the quadratic formula, we get:
\($x = \frac{-28 \pm \sqrt{28^2 - 4\times 1 \times 192}}{2\times 1}$$\)
Simplifying this expression, we get:
\($$x = -14 \pm 2\sqrt{19}$$\)
Therefore, the polynomial \($x^2 + 28x + 192$\) can be factored as:
\($$x^2 + 28x + 192 = (x - (-14 + 2\sqrt{19}))(x - (-14 - 2\sqrt{19}))$$\)
or
\($$x^2 + 28x + 192 = (x + 14 - 2\sqrt{19})(x + 14 + 2\sqrt{19})$$\)
So, we have factored the polynomial into two factors.
To know more about Area visit;
brainly.com/question/22469440
#SPJ1