Answer:
She needs 301.8 in² of tissue paper.
Step-by-step explanation:
In order to calculate the amount of tissue paper she needs to make 21 hats, we need to find the area of each hat and multiply it by the total number of hats she wants to make.
Since the Vietnamese conical hats are hollow and don't have a base, we need to find the area of the it's lateral walls, this is given by the following expression:
lateral area = pi*r*l
r = d/2 = 16/2 = 8 in
We were given the height, but we need the slant height, therefore:
l = sqrt(r² + h²) = sqrt(8² + 9²) = sqrt(64 + 81) = sqrt(145) = 12.041 in
Then the lateral area is:
lateral area = pi*8*12.0141 = 301.8 in²
She needs 301.8 in² of tissue paper.
PLS HELP‼️
If you can pls show work
Answer:
16
90
70
20
Step-by-step explanation:
We are given the equation of the sum of the measures of the angles equaling 180. We solve the equation for x.
5x + 10 + 4x + 6 + x + 4 = 180
Combine like terms:
5x, 4x, and x are like terms, and have a sum of 10x. (remember that x is the same as 1x).
10, 6, and 4 are like terms, and have a sum of 20.
10x + 20 = 180
Subtract 20 from both sides.
10x = 160
Divide both sides by 10.
x = 16
Now that we know that x = 16, we substitute x with 16 in each expression of the measure of an angle and evaluate the expression to find the measure of each angle.
Angle A:
5x + 10 = 5(16) + 10 = 80 + 10 = 90
Angle B:
4x + 6 = 4(16) + 6 = 70
Angle C:
x + 4 = 16 + 4 = 20
What is the slope of the line that passes through the points (8,8) and (20, -2)?
Answer:
-5/6
Step-by-step explanation:
Use slope intercept form: \(\frac{y_2-y_1}{x_2-x_1}\)
\(\frac{-2-8}{20-8}\) = \(\frac{-10}{12}\) = -5/6
1. Ms. Alman wrote the following number on the board:
853.72
In which number is the value of the digit 7 exactly 10 times the value of the digit 7 in the
number Ms. Alman wrote?
A. 739
B. 871
C. 907.6
D. 945.87
2. Latika's class is learning about decimals. Latika raises her hand and says, "Hundredths
Answers:
871
The question cut off at hundredths but Latika was right
Step-by-step explanation:
Please answer with the work shown
The perimeter first figure that is made of a square and equilateral triangle is 52 cm.
What exactly are squares?
A square is a two-dimensional planar shape with four equal sides and four 90-degree angles. The features of a rectangle are similar to those of a square, but the distinction is that a rectangle has just its opposing sides equal.
A square's most significant qualities are
The four inner angles are 90 degrees.The four sides of the square are congruent, or equal.The square's opposing sides are parallel.The diagonals of the square intersect at 90°.The square's two diagonals are equal to each other.The diagonal of a square is divided into two isosceles triangles.
Square area=(side)²
Square perimeter=4*side
Now,
For first figure given that
sides of square are 14 cm in length
and length of side of equilateral triangle are=5 cm
but for finding perimeter of the figure only 3 sides of square and 2 sides of triangle are needed.
So, perimeter=3*14+2*5
=42+10
=52 cm
hence,
The perimeter first figure 52 cm.
To know more about squares visit the link
https://brainly.com/question/28776767?referrer=searchResults
#SPJ1
given the first layer of a convolutional neural network with units, and which inputs in grayscale images that have pixel dimensions, what is the size of the weight matrix for this cnn? describe what the rows/columns represent
To determine the size of the weight matrix for the given convolutional neural network (CNN), we need to consider the number of units in the first layer and the dimensions of the input grayscale images.
In a CNN, the weight matrix is used to perform the convolution operation, which involves applying filters to the input images. Each unit in the first layer corresponds to a specific filter or kernel. The size of the weight matrix will depend on the number of units in the layer and the dimensions of the filters.Let's assume that the number of units in the first layer is N, and the input grayscale images have pixel dimensions MxM. In this case, the weight matrix will have dimensions N x (K x K), where K represents the kernel size. Each row of the weight matrix corresponds to the weights associated with a specific unit in the first layer.The number of columns in the weight matrix is determined by the kernel size, which is typically a square matrix.
The values in the weight matrix represent the learnable parameters of the CNN. By adjusting the weights in the matrix, the CNN can learn to extract meaningful features from the input images and make accurate predictions. Overall, the size of the weight matrix for the given CNN is N x (K x K), where N is the number of units in the first layer, and K is the kernel size. The rows of the weight matrix correspond to the units in the first layer, and the columns represent the weights associated with each pixel in the kernel used for convolution.
To learn more about convolutional neural network (CNN) click here:
brainly.com/question/31285778
#SPJ11
Given g(x) = -
—x – 2, find g(-3).
Answer:
1
Step-by-step explanation:
negative times negative is positive so that would make it 3-2 which is 1.
what is the range of f(X)=3x
The range is (-∞,∞),{y∣y∈R}
The range is the set of all valid y values. Using the graph to find the range.
Interval Notation: (-∞,∞)
Range: (-∞,∞),{y∣y∈R}
Graph:
In mathematics, a graph is a logical visual representation of any data. The graph shows the relationship between the values of the variables. In graph theory, a group of objects that are related in some way are represented by a graph. In essence, the edges of the objects are representations of the connections between the vertices, or nodes, of the objects. Numerous graph types are employed in mathematics and statistics to visually display data. The field of graph theory is concerned with the study of points and lines. It is a subfield of mathematics with a graph analysis emphasis.
To learn more about graph visit: https://brainly.com/question/17267403
#SPJ9
2x - 3y = 6
3x + y = 32
Answer:
what
Step-by-step explanation:
i dont understand....
NEED HELP ASAP!!!
a. Write an equation in slope-intercept form for the above table.
b. Graph the line in part (a).
Answer:
y=2x+5
Step-by-step explanation:
The y-intercept is when x is o so that will be 5.
To find the slope use the slope formula which is the change of y over the change of x. Choose 2 points.
\(\frac{y2-y1}{x2-x1}\)
\(\frac{9-7}{2-1}\)=\(\frac{2}{1}\)=2
What is the term in mathematics for the operation or number that leaves others unchanged when combined with them? In multiplication, it is one, while in addition, it is zero?
The term is called an identity element. In multiplication, the identity element is one because any number multiplied by one results in the same number. In addition, the identity element is zero because any number added to zero results in the same number.
The term in mathematics for the operation or number that leaves others unchanged when combined with them is called the identity element.
It is also known by the name of neutral element.
In multiplication, the identity element is one (1) because when you multiply a number by one the result remains the same as the original number. For any number a,
a1=1a=a.
While in addition, the identity element is zero (0) because when you add zero to a number, the result remains the same as the original number. For any number a,
a+0=0+a=a.
There is no identity element for subtraction, and division only has an identity element for certain sets.
Know more about identity element here:
https://brainly.com/question/31372727
#SPJ11
Can someone help i will give i the brainly answer thing
Step-by-step explanation:
x-25= 6x-5
-5x = 20
x=-4
PLEASE HELP ME ASAP PLEASE.
Answer:
See below
Step-by-step explanation:
g (h(6)) :
h (6) = 3 ( 6^2) + 2 = 110
then g (110) = sqrt (110)
h (g(5))
g(5) = sqrt 5
then h( sqrt5) = 3 ( sqrt5)^2 + 2 = 17
Distributive Property to find (z-5)(z+3)
Answer:
z×(-5+3)then you complete the sum and that is your answer
Step-by-step explanation:
hope it helps you
if f(x)=x/2-2 and g(x)=2x^2-2+x-3, find (f+g)(x)
Answer:
Add all the corresponding parts of each function. The degree of x determines which correspond.
2x^2 (degree 2)
x + x/2 (degree 1)
-3-2 (degree 0)
So you get
2x^2 + 3x/2 - 5
Step-by-step explanation:
I hope this helped you.
Please mark Brainliest.
Have a great day!!!!!!!!!!!
Daniel works at Funplex. Last week, he worked for 12 hours and made $93.84. How much does Daniel make per hour?
Answer
$7.82
Step-by-step explanation:
12 hrs=$93.84
1 hr= 93.84/12
1 hr=$7.82
ANSWER QUICK PLEASE
Is there a different triangle Diego could have drawn that would answer the question? Explain or use the tool below to show your reasoning. The triangle is in the file
It would have been better if he drew it like one of these because they're more standard in math. It's also easier to identify that it's supposed to be a right triangle because that's essentially what it is. (45+45=90 and 90 +90= 180).
use stoke's theorem to evaluate ∫ c 2 x y 2 z d x 2 x 2 y z d y ( x 2 y 2 − 2 z ) d z where c is the curve given by x
Evaluated the integral along the curve c: ∫c (y^2 - 2xy) dx = ∫c (y^2 - 2xy) dx.
To evaluate the integral ∫ c 2 x y 2 z d x 2 x 2 y z d y ( x 2 y 2 − 2 z ) d z using Stokes' theorem, we need to follow these steps:
Step 1: Determine the curl of the vector field.
First, let's find the curl of the vector field F = (2xy^2z, x^2yz, x^2y^2 - 2z).
The curl of F can be calculated using the formula:
curl F = (∂Fz/∂y - ∂Fy/∂z, ∂Fx/∂z - ∂Fz/∂x, ∂Fy/∂x - ∂Fx/∂y).
By substituting the components of F, we get:
curl F = (2xz - 0, 0 - yz, y^2 - 2xy).
Therefore, the curl of F is (2xz, -yz, y^2 - 2xy).
Step 2: Determine the surface bounded by the curve.
The curve c is given by x. This means that the curve lies in the xy-plane.
To determine the surface bounded by the curve, we need to find the normal vector to the curve. Since the curve lies in the xy-plane, the normal vector is k (the z-axis).
Step 3: Calculate the dot product between the curl of F and the normal vector.
The dot product between the curl of F and the normal vector is given by:
(2xz, -yz, y^2 - 2xy) · k = y^2 - 2xy.
Step 4: Evaluate the double integral over the region.
Now, we need to evaluate the double integral of y^2 - 2xy over the region D, which is the projection of the curve c onto the xy-plane.
Since the curve is given by x, the projection of the curve onto the xy-plane is simply the curve itself.
Therefore, the double integral becomes:
∫∫D (y^2 - 2xy) dA = ∫c (y^2 - 2xy) dx.
Step 5: Evaluate the line integral.
Using the line integral, we can evaluate the integral along the curve c:
∫c (y^2 - 2xy) dx = ∫c (y^2 - 2xy) dx.
And this is the final step in evaluating the given integral using Stokes' theorem.
Learn more about Stokes' theorem https://brainly.com/question/28381095
#SPJ11
What are the lower quartile, upper quartile, and median for this box and
whisker plot?
A) LQ = 22 UQ = 10 Median = 18.5
B) LQ = 10 UQ = 22 Median = 18
C) LQ = 10 UQ = 22 Median = 18.5
D) LQ = 10 UQ = 22 Median = 19
Answer:
C
Step-by-step explanation:
Answer:
B
Step-by-step explanation:
The lower quartile range is shown by the bottom of the box which is at 10.
The median is shown in the middle line, which is closer to 18 than 18.5.
The upper quartile range in the end of the box, which is at 22!
(You can also look at the picture attached if that helps.)
the admission fee at an amusement park is 1.5 dollars for children and 4 dollars for adults. on a certain day, 351 people entered the park, and the admission fees collected totaled 1014 dollars. how many children and how many adults were admitted?
There were 682 children's and 332 adults were admitted when the entrance charge to an park is $4 for adults and $1.50 for children.
Given that,
The entrance charge to an amusement park is $4 for adults and $1.50 for children. 351 persons visited the park on one particular day, and 1014 dollars in entrance fees were collected.
We have to find how many people and kids were allowed inside.
We know that,
We get equations as,
1.5x+4y=351 ----->equation(1)
The other equation is
x+y=1014 ----->equation(2)
Take the equation(2)
x+y=1014
y=1014-x
Substitute y=1014-x in equation(1)
1.5x+4y=351
1.5x+4(1014-x)=351
1.5x+2056-4x=351
1.5x-4x=351-2056
-2.5x=-1705
2.5x=1705
x=1705/2.5
x=682
Substitute x=682 in equation(2)
y=1014-x
y=1014-682
y=332
Therefore, There were 682 children's and 332 adults were admitted when the entrance charge to an amusement park is $4 for adults and $1.50 for children.
To learn more about adults visit: https://brainly.com/question/28898057
#SPJ4
32/56 = x/7 what is the answer please bestie
Answer:
4/7
Step-by-step explanation:
32/56 = 4/7
Answer:
x = 4
Step-by-step explanation:
\(\frac{32}{56} = \frac{x}{7}\\\\\frac{32}{56}*7 = x\\\\\frac{32}{8} = x \\\\4 = x\)
12 < k + 11
The solution of the inequality is
\(k > 1\)
Step-by-step explanation:
1) Subtract 11 from both sides.
\(12 - 11 < k\)
2) Subtract 12 - 11 to 1.
\(1 < k\)
3) Switch sides.
\(k > 1\)
Therefor the answer is, k > 1.
Use an appropriate change of variables to find the area of the region in the first quadrant enclosed by the curves y=x, y=2x, x=y2, x=4y2.
Please also show how to obtain the bounds for u and v, I was having difficulty with that. Thank you so much.
The area of the region enclosed by the curves y = x, y = 2x, x = y^2, and x = 4y^2 in the first quadrant is 1/16.
We can use a change of variables to simplify the problem. Let's introduce new variables u and v, where u = y^2 and v = 4y^2. This transformation allows us to express the curves in terms of u and v.
First, let's consider the curve y = x. Substituting u = y^2, we have u = x. This equation represents the transformation of y = x in terms of u.
Next, let's consider the curve y = 2x. Substituting u = y^2, we have u = (2x)^2 = 4x^2. This equation represents the transformation of y = 2x in terms of u.
Now, let's consider the curve x = y^2. Substituting v = 4y^2, we have x = v/4. This equation represents the transformation of x = y^2 in terms of v.
Finally, let's consider the curve x = 4y^2. Substituting v = 4y^2, we have x = v. This equation represents the transformation of x = 4y^2 in terms of v.
Now, we can rewrite the equations of the curves in terms of u and v:
u = x and u = 4x^2
x = v/4 and x = v
To find the bounds for u and v, we need to determine the region enclosed by these curves in the first quadrant: Curve u = x:
It represents the parabolic curve opening to the right, starting from the origin (0,0).
Curve u = 4x^2:
It represents an upward-opening parabola centered at the origin (0,0).
Curve x = v/4. It represents a vertical line passing through the origin (0,0) with a slope of 1/4.
Curve x = v.
It represents a diagonal line passing through the origin (0,0) with a slope of 1. First, let's find the intersection points of curves 1 and 2:
u = x and u = 4x^2
Setting them equal: x = 4x^2
Rearranging: 4x^2 - x = 0
Factorizing: x(4x - 1) = 0
So, we have two solutions: x = 0 and x = 1/4.
When x = 0, we have u = 0.
When x = 1/4, we have u = 1/16.
Next, let's find the intersection points of curves 3 and 4:
x = v/4 and x = v
Setting them equal: v/4 = v
Rearranging: v - 4v = 0
Simplifying: -3v = 0
So, we have one solution: v = 0.
Now, we can determine the bounds for u and v based on these intersection points:
For u, it ranges from 0 to 1/16.
For v, it ranges from 0 to 0.
Since the range of v is from 0 to 0. Therefore, the area of the region can be found by integrating with respect to u only, from 0 to 1/16.
To calculate the area, we integrate 1 with respect to u over the given bounds: Area = ∫[0, 1/16] 1 du
Area = u |[0, 1/16]
= 1/16 - 0
= 1/16
To know more about curves refer here:
https://brainly.com/question/31585758#
#SPJ11
What will be the cost of paper 2 m wide, at rupees 3 1/2 per metre for papering the walls of a room 21 m long 15 m broad, and 10 m high
Using the sine rule complete equation
The complete equation using the sine rule is 10/sin(41) = 13/sin(59)
How to complete equation using the sine ruleFrom the question, we have the following parameters that can be used in our computation:
The triangle
The sine rule states that
a/sin(A) = b/sin(B)
using the above as a guide, we have the following:
10/sin(41) = 13/sin(59)
Hence, the complete equation using the sine rule is 10/sin(41) = 13/sin(59)
Read more about law of sines at
https://brainly.com/question/30974883
#SPJ1
What is the slope of an absolute value function?
Its slope is m = 1 on the right side of the vertex, and m = - 1 on the left side of the vertex.
Absolute Value Function:
An absolute value function is a function that contains an algebraic expression within the absolute value sign. Remember that the absolute value of a number is its distance from 0 on the number line. To graph the absolute value function, select some values of x and find some ordered pairs.
In mathematics, the absolute value or modulus of the real number x, represented as.
|x| is the non-negative value of x, regardless of sign.
x is positive and |xI =-x}. For example, the absolute value of 3 is 3, and the absolute value of -3 is also 3. The absolute value of a number can be thought of as the distance from zero.
Generalizations of the absolute value of real numbers are made in a variety of mathematical contexts. For example, absolute value is also defined for complex numbers, quaternions, ordinal rings, fields, and vector spaces. Absolute value is closely related to the concepts of magnitude, distance, and norm in various mathematical and physical contexts.
Learn more about Slope:
https://brainly.com/question/19131126
#SPJ4
Indicate the level of measurement for the data set described Time of day a person woke up each day for a year Answer Nominal Ordinal Interval Ratio
The level of measurement for the data set described is Interval. This is because time is measured on an equal scale and allows for meaningful comparison but does not have a true zero point.
The level of measurement for the data set described, "Time of day a person woke up each day for a year", is nominal. This is because the data can be categorized into distinct groups based on the time of day, but no inherent order or numerical value is assigned to each category.
The level measure or measure is a distribution that describes the nature of the data in the values given for the variable. The most famous taxonomy, created by psychologist Stanley Smith Stevens, has four levels or scales: nominal, ordinal, interval, and ratio. This principle of differentiating measurement has its roots in psychology and has been criticized by researchers in other disciplines.
Learn more about level of measurement:
brainly.com/question/20816026
#SPJ11
Select the pairs of numbers that lie on opposite sides of O on a number line.
A-5 and 6
B-12 and 15
C 3 and 300
D 6 and -19
E 4 and 7
F 25 and 16
help me find the right angles URGENT !!
Answer:
q is around 85-89 and S is 91-95
Step-by-step explanation:
sorry i dont have a protractor on me this is the best i can do
Arrange the steps in order that would be used to algebraically solve a system of linear and quadratic equations. 1) Solve each equation for y. 2) Solve for x. 3) Set the 2 equations equal. 4) Insert x back into an equation to find the y value.
The steps to algebraically solve a system of linear and quadratic equations involve solving each equation for y, solving for x, setting the two equations equal to each other, and inserting the x value back into one of the equations to find the corresponding y value.
1. To algebraically solve a system of linear and quadratic equations, the following steps can be used: 1) Solve each equation for y. 2) Solve for x. 3) Set the two equations equal to each other. 4) Insert the value of x back into one of the equations to find the corresponding y value.
2. To begin solving a system of linear and quadratic equations, it is often helpful to isolate the variable y in both equations. This involves rearranging the equations so that y is on one side and all other terms are on the other side. Once both equations are solved for y, we can move on to the next step.
3. The next step is to solve for x. With the equations in terms of y, we can substitute one equation into the other, setting them equal to each other. This allows us to eliminate the variable y and solve for x. By solving the resulting equation, we obtain the value of x.
4. After finding the value of x, we can proceed to the final step. We substitute this x value back into one of the original equations to determine the corresponding y value. This completes the process of solving the system of equations, providing us with the solution in terms of x and y.
5. In summary, the steps to algebraically solve a system of linear and quadratic equations involve solving each equation for y, solving for x, setting the two equations equal to each other, and inserting the x value back into one of the equations to find the corresponding y value. These steps help in finding the values of x and y that satisfy both equations simultaneously, giving the solution to the system of equations.
Learn more about system of equations here: brainly.com/question/20067450
#SPJ11
The measures of the angles of a triangle are shown in the figure below
Answer:
they very much are there
Step-by-step explanation:
Answer:
37.5 degrees
Step-by-step explanation:
All triangle angles must sum up to 180 degrees
63 + 90 = 153
153 = 4x + 3
150 = 4x
37.5 = x