ATQ
\(\\ \sf\longmapsto x+2x-3=24\)
\(\\ \sf\longmapsto 3x-3=24\)
\(\\ \sf\longmapsto 3x=24+3\)
\(\\ \sf\longmapsto 3x=27\)
\(\\ \sf\longmapsto x=9\)
Answer:
ᎪꪀsωꫀᏒ9 hours Cathy study per week
Step-by-step explanation:
=> according to the question
➪ x+2x-3=23
➪ 3x-3=24
➪ 3x=24+3
➪ 3x=27
➪ x= 27/3
➪ x= 9
Compare / Contrast Exponential Equations
1.) 2 (1/5)x-5
2.) y=4x
The functions y = 2 (1/5)^x - 5 and y = 4^x are compared as follows
y = 2 (1/5)^x - 5 y = 4^x
Initial value: 2 1
base function: 1/5 = decay function 4 = growth function
Translation: 5 units down no transformation
What is a decay function?
A decay function is a mathematical function used in various fields such as physics, engineering, economics, and machine learning, to model the reduction or decline of a value over time.
It is a type of function that decreases at a rate proportional to its current value, so that it approaches zero as time progresses.
Decay function are exponential functions with the base function as
0 < k < 1This is the opposite of growth function which has values greater than 1
Learn more about growth functions at:
https://brainly.com/question/27161222
#SPJ1
The addition law is potentially helpful when we are interested in computing the probability of b. the intersection of two events c. the union of two events d. conditional events
The addition law is particularly useful when calculating the probability of the union of two events. It allows us to determine the probability of either event A or event B occurring.
This law provides a straightforward method for calculating probabilities in situations where we want to know the likelihood of at least one of the events happening.
The addition law, also known as the sum rule, states that the probability of the union of two events A and B is given by the sum of their individual probabilities minus the probability of their intersection. Mathematically, this can be expressed as P(A ∪ B) = P(A) + P(B) - P(A ∩ B).
When we are interested in computing the probability of the union of two events, the addition law allows us to combine the probabilities of the individual events to obtain the overall probability of at least one of them occurring. It is particularly helpful in situations where the events are not mutually exclusive, meaning that they can occur together or independently.
In contrast, when calculating the probability of the intersection of two events or dealing with conditional events, other rules such as the multiplication rule and conditional probability formulas are more appropriate.
To learn more about intersection click here:
brainly.com/question/12089275
#SPJ11
An observer stands on the bank of a river, and looks directly across the river to a tree on the opposite bank. The angle of elevation from the feet of the observer to the top of the
tree is 30 degrees.
If the river is 20 feet wide, how tall is the tree?
The height of the tree opposite to the river is (20√3)/3 feet.
What are trigonometric ratios in terms of a right-angle triangle?We know a right-angled triangle has three sides they are -: Hypotenuse,
Opposite and Adjacent.
We can remember SOH CAH TOA which is,
sin = opposite/hypotenuse, cos = adjecen/hypotenuse and
tan = opposite/adjacent.
The width of the river here is adjacent and the height of the tree is opposite.
We know, tan = opposite/adjacent.
Therefore, tan30° = opposite/20.
1/√3 = opposite/20.
opposite = 20/√3.
opposite = (20√3)/3 feet.
learn more about trig ratios here :
https://brainly.com/question/14977354
#SPJ1
show work no calculator
Find the length of the curve = 2 sin (0/3); 0
The length of the curve \(\(y = 2\sin(\frac{x}{3})\)\) from x = 0 can be found by integrating the square root of the sum of the squares of the derivatives of x and y with respect to x, without using a calculator.
To find the length of the curve, we can use the arc length formula. Let's denote the curve as y = f(x). The arc length of a curve from x = a to x = b is given by the integral:
\(\[L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx\]\)
In this case, \(\(y = 2\sin(\frac{x}{3})\)\). We need to find \(\(\frac{dy}{dx}\)\), which is the derivative of y with respect to x. Using the chain rule, we get \(\(\frac{dy}{dx} = \frac{2}{3}\cos(\frac{x}{3})\)\).
Now, let's substitute these values into the arc length formula:
\(\[L = \int_{0}^{b} \sqrt{1 + \left(\frac{2}{3}\cos(\frac{x}{3})\right)^2} \, dx\]\)
To simplify the integral, we can use the trigonometric identity \(\(\cos^2(\theta) = 1 - \sin^2(\theta)\)\). After simplifying, the integral becomes:
\(\[L = \int_{0}^{b} \sqrt{1 + \frac{4}{9}\left(1 - \sin^2(\frac{x}{3})\right)} \, dx\]\)
Simplifying further, we have:
\(\[L = \int_{0}^{b} \sqrt{\frac{13}{9} - \frac{4}{9}\sin^2(\frac{x}{3})} \, dx\]\)
Since the problem only provides the starting point x = 0, without specifying an ending point, we cannot determine the exact length of the curve without additional information.
To learn more about derivatives refer:
https://brainly.com/question/31399580
#SPJ11
Which of these strategies would eliminate a variable in the system of equations?
2x- 6y=6
6x - 4y = 2
Choose all answers that apply: more than 1
Multiply the bottom equation by 3 then subtract the bottom equation from the top equation
Multiply the bottom equation by -3/2 then add the equations.
Multiply the top equation by-3. then add the equations
Answer:
Multiply the bottom equation by -3/2 then add the equations.
Multiply the top equation by-3. then add the equations
Step-by-step explanation:
Given the simultaneous equation
2x- 6y=6 ... 1
6x - 4y = 2 ... 2
To eliminate a variable, we have to make the coefficient of one of the variable to be the same.
Multiply equastion 1 by -3
-6x+18y= -18
6x - 4y = 2
Add the result:
-6x + 6x + 18y-4y = -18+2
18y-4y = -18+2
14y = -18
y = -9/7
Another way is to Multiply the bottom equation by -3/2 then add the equations.
Multiplying equation 2 by -3/2 will give;
6x(-3/2) - 4y(-3/2) = 2(-3/2)
-9x + 6y = -3
Add to equation 1;
2x- 6y=6
-9x + 2x + 0 = -3+6
-7x = 3
x = -3/7
Hence the correct two options are;
Multiply the bottom equation by -3/2 then add the equations.
Multiply the top equation by-3. then add the equations
In a collection of coins there are twice as many nickels as dimes and seven less quarters then dimes. Find the number of each coin if the collection is worth $16.25
Answer:
15 nickels, 6 quarters, and 12 dimes.
Step-by-step explanation: i hoped it helped ;)
Alake has a surface area of \( 19.0 \) square miles and an average depth of \( 55.0 \) feet. 1st attempt What is its volume in liters? L
Given that 1 square mile is approximately equal to 2,589,988 square feet and 1 liter is equal to 33.814 fluid ounces, we can proceed with the conversion.The volume of Alake is approximately 8,472,413,717 liters.
To explain the calculation further, we start by converting the surface area of Alake from square miles to square feet. We multiply the given surface area of 19.0 square miles by 2,589,988 to obtain the surface area in square feet, which is approximately 49,204,778 square feet.
Next, we convert the average depth from feet to liters. Since volume is a three-dimensional measurement, we need to convert the depth to a cubic unit before converting it to liters. To do this, we multiply the average depth of 55.0 feet by the conversion factor of 28,316.8466 to obtain the depth in liters, which is approximately 1,544,426.56 liters.
Finally, we calculate the volume by multiplying the surface area by the average depth. Multiplying 49,204,778 square feet by 1,544,426.56 liters gives us a volume of approximately 8,472,413,717 liters.
This calculation assumes that the shape of Alake is approximately cylindrical, which allows us to multiply the surface area by the depth to estimate the volume. It's important to note that the actual shape of Alake may deviate from a perfect cylinder, which could affect the accuracy of the volume estimation.
Know more about volume :brainly.com/question/6071957
#SPJ11
The slope-intercept form of a line is y = mx + b, where m is the slope and b is the y-intercept. If Shawn knows that the slope of the line is 4 and the line passes through the point (1,8), which equation should be use to find the y-intercept and what is the y-intercept of the line?
Answer:
y = 4x + 4
Step-by-step explanation:
Plug in your x and y coordinates
8 = 4(1) + b
8 = 4 + b get your constants together by subtracting 4 from both sides
4 = b
Hope this helps
On his bookshelf, Adam has the difference between two-thirds of Brett's books and two-thirds of Charlie's books. If Brett has 84 books and Charlie has 27 books, how many books does Adam have?
Answer:
30 books
Step-by-step explanation:
Subtract 4a2 – 3ab + 2b2 from 3b2 + 4ab – 2a2
Answer:
-6a2+7ab+b2
Step-by-step explanation:
please mark me as brainlest
Answer:
- 6a^2 + 7ab + b^2
Step-by-step explanation:
3b^2 + 4ab - 2a^2 - ( 4a^2 - 3ab + 2b^2 )
= 3b^2 + 4ab - 2a^2 - 4a^2 + 3ab - 2b^2
= 3b^2 - 2b^2 - 2a^2 - 4a^2 + 4ab + 3ab
= 1b^2 - 6a^2 + 7ab
= - 6a^2 + 7ab + b^2
Question 9(Multiple Choice Worth 2 points)
(Creating Graphical Representations LC)
A teacher was interested in the subject that students preferred in a particular school. He gathered data from a random sample of 100 students in the school and wanted to create an appropriate graphical representation for the data.
Which graphical representation would be best for his data?
Stem-and-leaf plot
Histogram
Circle graph
Box plot
The most useful visual representation of the teacher's data on the preferred subjects of 100 kids at the school would be a histogram. answer is option (a).
What is a histogram?In a histogram, which is a graphical depiction of the distribution of a set of continuous or discrete data, the height of a bar above the bin on the x-axis represents the frequency or count of the data falling within each bin. On the y-axis of the histogram, the frequency or count of the data points that fall into each bin is displayed.
The most useful visual representation of the teacher's data on the preferred subjects of 100 kids at the school would be a histogram. In a histogram, bars are used to illustrate the frequency distribution of a group of continuous or discrete data points.
To know more about histogram, visit:
brainly.com/question/18198700
#SPJ1
Consider a population of 1,024 mutual funds that primarily invest in large companies. Hannah has determined that μ, the mean one-year total percentage return achieved by all the funds, is 7.10 and that σ, the standard deviation, is 3.50.
According to the Chebyshev rule, what percentage of these funds are expected to be within ±6 standard deviations of the mean? _____ (Round to 2 decimal places as needed.)
The percentage of these funds are expected to be within ±6 standard deviations of the mean is 97.22% (approx).Hence, the required answer is 97.22.
The Chebyshev’s theorem is used to determine the percentage of observations that lie within a certain number of standard deviations of the mean in a set of data.
According to the Chebyshev rule, what percentage of these funds are expected to be within ±6 standard deviations of the mean can be calculated using the formula:
\($$1 - \frac{1}{k^2}$$\)
Where k is the number of standard deviations. For the question, the mean is 7.10 and standard deviation is 3.50.As per the given data, we can find that, the number of standard deviation from the mean is ±6.
Thus, k = 6.
The percentage of these funds are expected to be within ±6 standard deviations of the mean is:
\($$1 - \frac{1}{k^2} = 1 - \frac{1}{6^2} = 1 - \frac{1}{36} = 0.9722$$\)
Therefore, the percentage of these funds are expected to be within ±6 standard deviations of the mean is 97.22% (approx).
Hence, the required answer is 97.22.
For more such questions on percentage , Visit:
https://brainly.com/question/30744872
#SPJ8
Find a nonzero vector orthogonal to the plane through the point P(0, 0, -3), Q(4,2, 0), and R(3, 3, 1). Find the area of the triangle PQR
a) Nonzero vector orthogonal to the plane through the point P(0, 0, -3), Q(4,2, 0), and R(3, 3, 1) would be (12, -6, -12)
b) Area of the triangle PQR would be 4.18
What is nonzero vector of orthogonal ?
Taking the cross product of two vectors in the plane yields a non-zero vector orthogonal to the plane across the points. Calculate the difference vector of two of the points, then take the cross product of that difference vector with the difference vector of the third point.
a) A nonzero vector orthogonal to the plane through the points P, Q, and R can be found by taking the cross product of two nonparallel vectors in the plane.
For example, the vector PQ = (4, 2, 0) - (0, 0, -3) = (4, 2, 3) and PR = (3, 3, 1) - (0, 0, -3) = (3, 3, 4). The cross product of these vectors is orthogonal to the plane:
PQ x PR = (12, -6, -12)
2) The area of triangle PQR can be found using the cross product formula for the area of a parallelogram. The area is given by the magnitude of the cross product of two sides of the triangle:
\(Area =\frac{ |PQ * PR| }{2}\\\\Area =\frac{\sqrt{(12^2 + (-6)^2 + (-12)^2)} }{2}\\\\Area =3 * \sqrt(10) / 2\\\\Area =4.18\)
Thus, Nonzero vector orthogonal to the plane through the point P(0, 0, -3), Q(4,2, 0), and R(3, 3, 1) would be (12, -6, -12) and area of the triangle PQR would be 4.18.
To know more about Nonzero vector orthogonal visit,
https://brainly.com/question/30264840
#SPJ4
Can someone please help me
Answer: the second one
Step-by-step explanation:
because \(-4^{4}\)= -256
Plsss help mee :))))
Answer:
positive and even
Step-by-step explanation:
.........................
Answer:
ow
Step-by-step explanation:
yess.
Solve 2(9-x) = 3 ( x +16 )
Answer: x=-6
Step-by-step explanation:
Let's solve your equation step-by-step.
2(9−x)=3(x+16)
Step 1: Simplify both sides of the equation by distribution
\(2(9-x)=3(x+16)\\(2)(9)+(2)(-x)=(3)(x)+(3)(16)\\18+-2x=3x+48\\-2x+18=3x+48\\\)
Step 2: Subtract 3x from both sides.
\(-2x+18-3x=3x+48-3x\\-5x+18=48\)
Step 3: Subtract 18 from both sides.
\(-5x+18-18=48-18\\-5x=30\)
Step 4: Divide both sides by -5.
\(\frac{-5x}{-5} =\frac{30}{-5} \\x=-6\)
Please help explain how to solve this. Find the value of each variable.
Answer:
base angle of isosceles triangle are equal..
25+25+x=180°50°+x=180°x=180-50x=130°hope it helps
stay safe healthy and happy.if an equilaterl triangle is inscribed in a circle of a radius 8cm.then what is the area of the triangle?
The area of the triangle is 83.14 square centimeters.
How to get the area of the triangle?If an equilateral triangle is inscribed in a circle of radius R, each side of the triangle measures:
S = R*√3
In this case R = 8cm.
And we know that the area of an equilateral triangle of side length S is:
\(A = \frac{\sqrt{3} }{4} *S^2\)
Replacing what we know in the area formula:
\(A = \frac{\sqrt{3} }{4} *(\sqrt{3}*8cm)^2 = 83.14 cm^2\)
The area of the triangle is 83.14 square centimeters.
If you want to learn more about triangles:
https://brainly.com/question/2217700
#SPJ1
I GIVE BRAINLISTS!
Which among the given is the 5th term in a sequence if the nth term rule is 2 + 3n?
A. 13
B. 15
C. 17
D. 20
Answer:
C. 17
Step-by-step explanation:
2 + 3n
= 2 + 3*5 ( Plug n = 5)
= 2 + 15
= 17
howard is designing a swing chair ride
Define each rule when rotating a point counterclockwise.
Rule when rotating a point counterclockwise:
90° : (x,y) ------> (-y,x)180° : (x, y) ------> (-x,-y)270° : (x,y) ------> (y,-x)Define rotation of the points and its rules?A transformation that revolves a figure around a point is called a rotation. The rotational center is where we refer to it.
The shape and dimensions of a figure remain the same while facing in a different direction. You can rotate a figure either clockwise or counterclockwise.An angle of rotation is a unit used to describe how much an object is rotated about its center. In most cases, the rotational angle is expressed in degrees. We define a rotation's degree measurement and direction. This image has been rotated 90 degrees both clockwise and counterclockwise around a central axis.Thus, rule when rotating a point counterclockwise:
90° : (x,y) ------> (-y,x)180° : (x, y) ------> (-x,-y)270° : (x,y) ------> (y,-x)To know more about the rotation of the points, here
https://brainly.com/question/1164739
#SPJ1
What equation has the same solution as 3x-5=5x + ll
Answer: -5=2x+11
Step-by-step explanation:
3x-5=5x+11
subtract 3x to both sides
3x-5 - 3x =5x+11 - 3x
simplify
-5 = 2x +11
answer is -5=2x+11
Is 700% of 8 less than 10, greater than 10 but less than 100, or greater than 100?
Answer:
Greater than 10 but less than 100.
Step-by-step explanation:
6 1/4(x-2/3)=93/8
solve
Question 25
*
On Monday, Lisa's fish bowl contained 1 litre of water. On Friday, the fish bowl
contained 0.75 litre of water. By what percentage did the amount of water in Lisa's fish
bowl decrease?
А.
в.
С.
D.
0.25%
0.75%
25%
759%
WILL GIVE BRAINLIEST + 15 POINTS
A group of 13 students spent 637 minutes studying for an upcoming test. What prediction can you make about the time it will take 125 students to study for the test?
It will take them 1,625 minutes.
It will take them 6,125 minutes.
It will take them 7,963 minutes.
It will take them 8,281 minutes.
Answer:
If there are 125 students, then the total time spent studying for the test will be 6,125 minutes. This is because x = (125 students * 637 minutes) / 13 students = 6,125 minutes.
Simplify the expression (5)2.
O 25
O-10
0-25
O 10
Which three ordered pairs describe points that are 5 units away from P(-1,2)?
A. (1,5)
B. (-6,7)
C. (-1,-3)
D. (4,2)
E. (2,-2)
The ordered pair that is 5 units away is (-1, -3)
What is a line?
A line is a distance between two points.
Analysis:
see attached file.
In conclusion, the ordered pair is (-1, -3)
Learn more about distance: brainly.com/question/7243416
#SPJ1
company a rents copiers for a monthly charge of $200 plus 10 cents per copy. company b rents copiers for a monthly charge of $400 plus 5 cents per copy. what is the number of copies above which company a's charges are the higher of the two? write your answer as a number only.
Therefore, when the number of copies made in a month is above 4000, company A's charges are higher than company B's charges in the given equation.
Let's start by setting up an equation to represent the cost of renting a copier from each company:
Cost for company A = 0.10x + 200
Cost for company B = 0.05x + 400
where x is the number of copies made in a month.
To find the number of copies above which company A's charges are higher than company B's charges, we need to set the two equations equal to each other and solve for x:
0.10x + 200 = 0.05x + 400
0.05x = 200
x = 4000
To know more about equation,
https://brainly.com/question/28243079
#SPJ11
8 - (-2) =
how do you rewright this as a addition problem
Answer:
8+2=10
Step-by-step explanation:
A negative minus a negative equals a positive. So 8-(-2) would go to 8+2
Answer:
8+2
Step-by-step explanation:
when you multiply a negative by another negative inside of the paranthesies it creates a positive