Answer:
\( \frac{1}{2} \)
\( \\ \)
Step-by-step explanation:
\( \frac{5}{8} - \frac{1}{8} \\ = \frac{4}{8} \\ = \frac{1}{2} \)
The graph of a cube root function f is shown.
The graph of g is a vertical shrink by a factor of 1/2 of the graph of f. Graph the function g.
A graph of the cube root function g(x) = 1/2x³ is shown in the image below.
What is a dilation?In Geometry, a dilation is a type of transformation which typically transforms the dimension (size) or side lengths of a geometric object, without affecting its shape.
This ultimately implies that, the dimension (size) or side lengths of the dilated geometric object would be stretched or shrunk depending on the scale factor that is applied.
When the parent cube root function f(x) = x³ is vertically shrunk by a scale factor of 1/2, the transformed function g(x) is given by;
g(x) = kf(x)
g(x) = 1/2f(x)
g(x) = 1/2x³.
Read more on dilation and scale factor here: brainly.com/question/4421026
#SPJ1
Please help me with this on the picture
9514 1404 393
Answer:
(-5, 4)
Step-by-step explanation:
The inside corner moves from (2, -2) to (-3, 2). That is 5 is subtracted from the x-coordinate, and 4 is added to the y-coordinate. (x, y) ⇒ (x -5, y +4)
The translation vector can be written horizontally as (-5, 4), or vertically as ...
\(\displaystyle\binom{-5}{4}\)
PLZ PLZ PLZ HELP I ONLY HAVE 5 MINUTES
Answer:
I think it is also a.
Step-by-step explanation:
Happy holidays!
Heyyyy help me please
\(▪▪▪▪▪▪▪▪▪▪▪▪▪ {\huge\mathfrak{Answer}}▪▪▪▪▪▪▪▪▪▪▪▪▪▪\)
Here's your Answer :
18.134 after rounding off - 18.1
2.28 after rounding off - 2.3
let's perform subtraction to get the required Answer :
\(18.1 - 2.3\)\(15 .8\)ind the area inside 2cos 3r
(tip: use6
and6
)
The area inside the polar curve R = 2cos(3θ) for three full rotations is 6π.
The polar curve R = 2cos(3θ) is symmetric about the x-axis, with three petals that extend from θ = 0 to θ = π/3, π to 4π/3, and 5π/3 to 2π. To find the area inside the curve, we need to integrate the expression for the area element in polar coordinates over the desired region:
dA = (1/2) \(R^{2}\) dθ
The limits of integration for θ are from α = -6π to β = 6π, since we want to find the total area inside the curve for three full rotations. Thus, the integral for the area is:
A = ∫(β=6π, α=-6π) (1/2) \(R^{2}\)dθ
= ∫(β=6π, α=-6π) (1/2) (2cos(3θ))^2 dθ
= 2∫(β=6π/3, α=-6π/3) cos^2(3θ) d(3θ) (using the identity cos^2(3θ) = (1 + cos(6θ))/2)
= ∫(β=6π/3, α=-6π/3) (1/2 + (1/2)cos(6θ)) d(3θ)
= (1/2)θ + (1/12)sin(6θ) ∣(β=6π/3, α=-6π/3)
= (1/2)(6π - (-6π)) + (1/12)(sin(36π) - sin(-36π))
= 6π
Correct Question :
Find The Area Inside R=2cos(3θ) (Tip: Use Α=−6π And Β=6π )
To learn more about polar curve here:
https://brainly.com/question/30716175
#SPJ1
Height (in.)
12
10
8642
Candle Height
0123456
Time (h)
12" candle:
8" candle:
12" candle
Step 1: Identify two points and 41
Step 2: Find the slope and simplify
Step 3: Label the answer with units
8" candle
Step 1: Identify two points and
Step 2: Find the slope and simplify
&
Step 3: Label the answer with units
By using the formula for slope of a line, it can be calculated that
For 12'' candle
Two points are (1, 10) and (4, 2)
Slope = \(-\frac{8}{3}\)
For 8'' candle
Two points are (3, 4) and (6, 0)
Slope = \(-\frac{4}{3}\)
What is slope of a line?
Slope of a line is the tangent of the angle that the line makes with the positive direction of x axis.
If \(\theta\\\) is the angle that the line makes with the positive direction of x axis, then slope (m) is given by
m = \(tan\theta\)
Here,
For 12'' candle
Two points are (1, 10) and (4, 2)
Slope =
\(\frac{2-10}{4-1}\\-\frac{8}{3}\)
For 8'' candle
Two points are (3, 4) and (6, 0)
Slope =
\(\frac{0-4}{6 - 3}\\-\frac{4}{3}\)
To learn more about slope of a line, refer to the link-
https://brainly.com/question/3493733
#SPJ1
HELP ME ASAP!!! YOU WILL BE BRAINLIEST
We can conclude that Maya's experimental probabilities fluctuate around the theoretical probability, but over a larger number of trials, the experimental probabilities should converge towards the theoretical probability.
What is probability?
Probability is simply how likely something is to happen. Whenever we're unsure about the outcome of an event, we can talk about the probabilities of certain outcomes—how likely they are. The analysis of events governed by probability is called statistics.
The theoretical probability of rolling a 5 on a fair die is 1/6, which means that if the die is rolled many times, we would expect to see a 5 about 1/6 of the time.
For the first 100 trials, Maya rolled a 5 on 25 of those trials. The experimental probability of rolling a 5 in this case is:
experimental probability = number of 5's rolled / number of trials
experimental probability = 25/100
experimental probability = 0.25
So, in the first 100 trials, Maya's experimental probability of rolling a 5 was 0.25.
For the first 200 trials, Maya rolled a 5 on 30 of those trials. The experimental probability of rolling a 5 in this case is:
experimental probability = number of 5's rolled / number of trials
experimental probability = 30/200
experimental probability = 0.15
So, in the first 200 trials, Maya's experimental probability of rolling a 5 was 0.15.
Comparing these experimental probabilities to the theoretical probability, we see that after 100 trials, Maya's experimental probability of rolling a 5 (0.25) is higher than the theoretical probability (1/6 ≈ 0.167). This suggests that Maya's sample of 100 trials was somewhat biased in favor of rolling a 5.
On the other hand, after 200 trials, Maya's experimental probability of rolling a 5 (0.15) is lower than the theoretical probability (1/6 ≈ 0.167). This suggests that Maya's sample of 200 trials was somewhat biased against rolling a 5.
Overall, we can conclude that Maya's experimental probabilities fluctuate around the theoretical probability, but over a larger number of trials, the experimental probabilities should converge towards the theoretical probability. This is known as the law of large numbers, which states that as the number of trials or observations increases, the experimental probability will tend to approach the theoretical probability.
Learn more about probability on:
https://brainly.com/question/13604758
#SPJ1
We might say that Maya's experimental probabilities oscillate about the theoretical probability, but after more trials, the experimental probabilities ought to converge to the theoretical probability.
What is probability?
Simply put, probability is the likelihood that something will occur. When we don't know how an event will turn out, we can discuss the likelihood or likelihood of several outcomes. Statistics is the study of events that follow a probability distribution.
A fair die has a theoretical probability of rolling a 5 of 1/6, therefore if the die is rolled several times, we can anticipate seeing a 5 roughly 1/6 of the time.
For the first 100 trials, Maya rolled a 5 on 25 of those trials. The experimental probability of rolling a 5 in this case is:
experimental probability = number of 5's rolled / number of trials
experimental probability = 25/100
experimental probability = 0.25
So, in the first 100 trials, Maya's experimental probability of rolling a 5 was 0.25.
For the first 200 trials, Maya rolled a 5 on 30 of those trials. The experimental probability of rolling a 5 in this case is:
experimental probability = number of 5's rolled / number of trials
experimental probability = 30/200
experimental probability = 0.15
So, in the first 200 trials, Maya's experimental probability of rolling a 5 was 0.15.
Comparing these experimental probabilities to the theoretical probability, we see that after 100 trials, Maya's experimental probability of rolling a 5 (0.25) is higher than the theoretical probability (1/6 ≈ 0.167). This suggests that Maya's sample of 100 trials was somewhat biased in favor of rolling a 5.
On the other hand, after 200 trials, Maya's experimental probability of rolling a 5 (0.15) is lower than the theoretical probability (1/6 ≈ 0.167). This suggests that Maya's sample of 200 trials was somewhat biased against rolling a 5.
Overall, we can conclude that Maya's experimental probabilities fluctuate around the theoretical probability, but over a larger number of trials, the experimental probabilities should converge towards the theoretical probability. This is known as the law of large numbers, which states that as the number of trials or observations increases, the experimental probability will tend to approach the theoretical probability.
Learn more about probability on:
https://brainly.com/question/13604758
#SPJ1
Each volleyball set costs $63.74.
Which equation represents the cost, c, of n sets?
The equation that represents the cost, c, of n sets is c = 63.74n
Which equation represents the cost, c, of n sets?from the question, we have the following parameters that can be used in our computation:
Each volleyball set costs $63.74.
Let the total number of sets be n
So we have
Cost of n = 63.74 * n
This gives
c = 63.74n
Hence, the equation is c = 63.74n
Read more about equation at
https://brainly.com/question/32492977
#SPJ1
11.1.21 A survey asked, "How many tattoos do you currently have on your body?" Of the males surveyed, responded that they had at least one tattoo. Of the females surveyed, responded that they had at least one tattoo. Construct a % confidence interval to judge whether the proportion of males that have at least one tattoo differs significantly from the proportion of females that have at least one tattoo. Interpret the interval. Let represent the proportion of males with tattoos and represent the proportion of females with tattoos. Find the % confidence interval for . The lower bound is nothing. The upper bound is nothing. (Round to three decimal places as needed.)
Complete question :
The Harris Poll conducted a survey in which they asked, "How many tattoos do you currently have on your body?" Of the 1205 males surveyed, 181 responded that they had at least one tattoo. Of the 1097 females surveyed, 143 responded that they had at least one tattoo. Construct a 95% confidence interval to judge whether the proportion of males that have at least one tattoo differs significantly from the proportion of females that have at least one tattoo. Interpret the interval.
Answer:
(−0.0085 ; 0.0481)
Step-by-step explanation:
Given that :
n1 = 1205 ; x1 = 181 ; n2 = 1097 ; x2 = 143 ; α = 95%
Zα/2 = 1.96 ( Z table)
Confidence interval : (p1 - p2) ± E
E =Zα/2 * √[(p1q1/n1) + (p2q2/n2)]
p1 = x1 /n1 =181/1205 = 0.1502
q1 = 1 - p1 = 1 -0.1502 = 0.8498
p2 = x2/n2 = 143/1097 = 0.1304
q2 = 1 - p2 = 1 -0.1304 = 0.8696
E = 1.96 * √(0.0001059 + 0.0001033)
E = 0.0283
p1 - p2 = 0.1502 - 0.1304 = 0.0198
Lower boundary = 0.0198 - 0.0283 = −0.0085
Upper boundary = 0.0198 + 0.0283 = 0.0481
(−0.0085 ; 0.0481)
What is 12/7 as an mixed number ??
Answer:
1 5/7
Step-by-step explanation:
\(1 \frac{5}{7} \)
is the answer if you meant to say mixed fraction
Exponential Functions
Lad Assessment
Which values of a and b in the exponential function y = a · b× would result in the following graph?
a. a = -3, b = 2 c. a = 3, b = 2
b. a = -1, b = 3 d. a = 2, b = -3
Answer:
A. a = -3, b = 2
Step-by-step explanation:
I calculated it logically
During a storm, a tree breaks 7 feet above the ground and falls to form a right triangle. If the top of the tree rests 23 feet from the base of the tree, approximately how tall was the tree before the storm? Multiple choice question. cross out A) 31 feet cross out B) 29 feet cross out C) 24 feet cross out D) 22 feet Tools are not currently accessible
Answer:
We can solve this problem using the Pythagorean theorem, which states that in a right triangle, the sum of the squares of the lengths of the legs (the sides adjacent to the right angle) is equal to the square of the length of the hypotenuse (the side opposite the right angle).
Let's let "h" be the height of the tree before it broke, and "x" be the distance from the base of the tree to where it broke. Then, we can set up the following equation using the Pythagorean theorem:
h^2 = x^2 + (h-7)^2
We also know that the top of the tree rests 23 feet from the base of the tree, so we can set up another equation:
x + 23 = h
Now we have two equations with two unknowns, which we can solve simultaneously. Rearranging the second equation, we get:
x = h - 23
Substituting this into the first equation, we get:
h^2 = (h-23)^2 + (h-7)^2
Expanding the squares and simplifying, we get:
0 = -46h + 552
Solving for h, we get:
h = 12
Therefore, the height of the tree before it broke was approximately 12 feet. Since none of the answer choices match this result, we cannot cross out any of the choices.
Simplify the algebraic fractions
Step-by-step explanation:
x²-9/x²-3x
x²-9 simplifies to (x+3)(x-3)
x²-3x simplifies to x(x-3)
cancel out the common term of (x-3) from the numerator and denominator to obtain
x+3/x
What number is 10% less than 800
Answer:
720 (If you are counting 10% of 820, not 10% of 100)
Y = 800(1 - 0.1)
Y = 800(0.9)
Y = 720
Answer: \(720\)
Step-by-step explanation:
\(800-10%\)%
\(Y = 800(0.9)\)
A cylinder open on both ends has a diameter of 10 decimeters(dm) and a height of 10 decimeters(dm). What is the
surface area of the cylinder?
314 dm ²
471 dm ²
628 dm ²
157dm2
the surface area of the cylinder is approximately 471 dm².
Now, For the surface area of the cylinder, we need to find the lateral area and the area of the two circular bases.
Since, The formula for the lateral area of a cylinder is
L = 2πrh,
where r is the radius of the cylinder and h is the height.
In this case, the diameter is 10 dm,
So the radius is 5 dm.
And the height is also 10 dm.
Therefore, the lateral area is:
L = 2πrh
L = 2π(5 dm)(10 dm)
L = 100π dm²
The formula for the area of a circle is
A = πr²,
where r is the radius.
In this case, the radius is 5 dm,
So the area of each base is:
A = πr²
A = π(5 dm)²
A = 25π dm²
To find the total surface area, we add the lateral area and the area of the two bases:
SA = 2(Area of Base) + Lateral Area
SA = 2(25π dm²) + 100π dm²
SA = 50π dm² + 100π dm²
SA = 150π dm²
Substitute pi as 3.14, we can calculate:
SA ≈ 150(3.14) dm²
SA ≈ 471 dm²
Therefore, the surface area of the cylinder is approximately 471 dm².
To learn more about cylinder visit:
https://brainly.com/question/30317329
#SPJ1
help please 30 points
Answer:
I'm pretty sure it should be 34
Step-by-step explanation:
4(x + 6) - 5y
4(5 + 6) - 5(2)
20 + 24 - 10
44 - 10
34
4(5 + 6) - 5(2)
4(11) -10
44 - 10 =
answer; 34
Find the sum of the following finite geometric series.
The sum of the geometric sequence in this problem is given as follows:
5.77.
What is a geometric sequence?A geometric sequence is a sequence of numbers where each term is obtained by multiplying the previous term by a fixed number, which is called the common ratio q.
The first term, the common ratio and the number of terms for this problem are given as follows:
\(a_1 = 10, q = -\frac{2}{3}, k = 8\)
The formula for the sum of the first n terms is given as follows:
\(S_n = a_1\frac{1 - r^n}{1 - r}\)
Hence the sum for this problem is given as follows:
\(S_8 = 10 \times \frac{1 - \left(-\frac{2}{3}\right)^8}{1 + \frac{2}{3}}\)
\(S_8 = 5.77\)
More can be learned about geometric sequences at brainly.com/question/24643676
#SPJ1
write an equation that describes the function
Answer:
x+7
Step-by-step explanation:
Hope this helps!
Please mark me brainliest if possible. :)
Laws of Exponents, urgent please need the answers right away, thank you!!
solve it both and show the step by step!
The values of the expressions are;
z³³
d⁻¹⁶
How to simply the exponentsNote that index forms are described as forms used in the representation of numbers or variables too large or small.
Some rules of index forms are;
Add the exponents when multiplying like basesSubtract the exponents when dividing like basesThen, from the information given, we have that;
(z⁻⁴/z⁶ × z⁵/z⁻⁶)⁻¹¹
Subtract the exponents, we have;
(z⁻² × z⁻¹)⁻¹¹
expand the bracket
z²² ⁺ ¹¹
z³³
(d⁴)⁻³/(d⁶)⁻² ÷ (d⁴/d⁶)⁻⁸
expand the brackets
d⁻¹²/d¹² ÷ (d⁻²)⁻⁸
subtract the exponents
d⁰ ÷ d¹⁶
d⁻¹⁶
Learn more about index forms at: https://brainly.com/question/15361818
#SPJ1
A triangle LMN with ln = 12 cm,Nm= x cm, Nk = 6cm and Km 8cm
Calculate the value of
(i) x
(ii) o
The value of x is 9 cm, and angle O is 0 degrees.
To solve the triangle LMN and find the values of x and angle O, we can use the Law of Cosines and the Law of Sines. Let's go step by step:
(i) To find the value of x, we can use the Law of Cosines. According to the Law of Cosines, in a triangle with sides a, b, and c, and angle C opposite to side c, the following equation holds:
c^2 = a^2 + b^2 - 2ab * cos(C)
In our case, we want to find side NM (x), which is opposite to angle N. The given sides and angles are:
LN = 12 cm
NK = 6 cm
KM = 8 cm
Let's denote angle N as angle C, side LN as side a, side NK as side b, and side KM as side c.
Using the Law of Cosines, we can write the equation for side NM (x):
x^2 = 12^2 + 6^2 - 2 * 12 * 6 * cos(N)
We don't know the value of angle N yet, so we need to find it using the Law of Sines.
(ii) To find angle O, we can use the Law of Sines. According to the Law of Sines, in a triangle with sides a, b, and c, and angles A, B, and C, the following equation holds:
sin(A) / a = sin(B) / b = sin(C) / c
In our case, we know angle N and side NK, and we want to find angle O. Let's denote angle O as angle A and side KM as side b.
We can write the equation for angle O:
sin(O) / 8 = sin(N) / 6
Now, let's solve these equations step by step to find the values of x and angle O.
To find angle N, we can use the Law of Sines:
sin(N) / 12 = sin(180 - N - O) / x
Since we know that the angles in a triangle add up to 180 degrees, we can rewrite the equation:
sin(N) / 12 = sin(O) / x
Now, we can substitute the equation for sin(O) from the Law of Sines into the equation for sin(N):
sin(N) / 12 = (6 / 8) * sin(N) / x
Now, we can solve this equation for x:
x = (12 * 6) / 8 = 9 cm
So, the value of x is 9 cm.
To find angle O, we can substitute the value of x into the equation for sin(O) from the Law of Sines:
sin(O) / 8 = sin(N) / 6
sin(O) / 8 = sin(O) / 9
9 * sin(O) = 8 * sin(O)
sin(O) = 0
This implies that angle O is 0 degrees.
Therefore, the value of x is 9 cm, and angle O is 0 degrees.
For more questions on Law of Cosines, click on:
https://brainly.com/question/30766161
#SPJ8
The figure for the given question is provided here :
hello can you help me with this question
Answer:
B. x is less than or equal to 5
Step-by-step explanation:
The dot is on 5 and is also a solid dot which means it is less than or equal to or greater than or equal to
In this case it is less than or equal to because the line goes to the left
Hope this helped!
The formula E= MHz, where E = gravitational potential energy , mass, g = gravity, and h= Height, is used to calculate gravitational potential energy. Solve this formula for h.
A store sells oranges and apples. Oranges cost $1.00 each and apples cost $2.00 each. In the first sale of the day, 15 fruits were sold in total, and the price was $25. How many of each type of frust was sold?
A store sells 5 oranges and 10 apples.
What is the cost amount?
The cost of an asset to you often serves as its basis. The cost is the sum that you pay for it using money, debt, other goods, or services. Sales tax and other purchase-related costs are included in the price.
Here, we have
Given: A store sells oranges and apples. Oranges cost $1.00 each and apples cost $2.00 each. In the first sale of the day, 15 fruits were sold in total, and the price was $25.
We have to determine how many of each type of fruit were sold.
We, let the oranges be x.
let the apples be y.
x + y = 15...(1)
1x + 2y = 25...(2)
We subtract equation(2) from equation(1), we get
y = 10
Now we put the value of y in equation (1) and we get
x + 10 = 15
x= 5
Hence, a store sells 5 oranges and 10 apples.
To learn more about the cost amount from the given link
https://brainly.com/question/25811981
#SPJ1
Please answer this correctly
Answer:
\( \boxed{Perimeter \: of \: semicircle = 61.68 \: feet} \)
Given:
\( \sf Area \: of \: semicircle = 226.08 \: square \: feet\)
To find:
Perimeter of semicircle
Step-by-step explanation:
Let 'r' be the radius of circle
\( \sf \implies Area \: of \: semicircle = \frac{ \pi {r}^{2} }{2} \\ \\ \sf \implies 226 .08 = \frac{\pi {r}^{2} }{2} \\ \\ \sf \implies \frac{\pi {r}^{2} }{2} = 226.08 \\ \\ \sf \implies \pi {r}^{2} = 2 \times 226.08 \\ \\ \sf \implies \pi {r}^{2} = 452.16 \\ \\ \sf \implies 3.14 \times {r}^{2} = 452.16 \\ \\ \sf \implies {r}^{2} = \frac{452.16}{3.14} \\ \\ \sf \implies {r}^{2} = 144 \\ \\ \sf \implies {r}^{2} = {12}^{2} \\ \\ \sf \implies \sqrt{ {r}^{2} } = \sqrt{ {12}^{2} } \\ \\ \sf \implies r = 2 \: feet\)
So,
\( \sf Perimeter \: of \: semicircle = \pi r + 2r \\ \\ \sf =( 3.14 \times 12) +( 2 \times 12)\\ \\ \sf = 37.68 + 24 \\ \\ \sf = 61.68 \:ft\)
These questions kinda hard help
Answer:
Step-by-step explanation:
Remark
All of the given listed figures have the property of 4 sides and 4 angles. There is also some relationship between the angles or pairs of angles. Only the square follows the same path. The others cannot be chosen because the sides differ and the angle properties are quite different.
Answer: Square
I have to add this problem
5/8+2/8
giving 10 points:)
The addition of the given fraction expression is 7/8.
In mathematics, an expression is a combination of numbers, symbols, and/or operators that represents a mathematical quantity or relationship. It can be a simple combination of numbers or a more complex combination involving variables, functions, or other mathematical constructs.
When adding fractions with the same denominator, you simply add the numerators and keep the denominator the same.
In this case, both fractions have a denominator of 8, so we can add their numerators:
5/8 + 2/8 = (5 + 2)/8 = 7/8
Thus, the sum of 5/8 and 2/8 is 7/8.
For more details regarding fractions, visit:
https://brainly.com/question/10354322
#SPJ1
suppose that we have collected information on how much a sample of households spend on clothing per year. if we are 90% confident that the true population mean will lie between $1,500 and $2,100, the chance that the population mean will either be less than $1,500 or above $2,100 is %.
10% of the time, the population mean will go below $1,500 or exceed $2,100.
Given that,
Assume that we have data on the annual spending on apparel of a sample of families. The probability that the population mean will fall below $1,500 or rise over $2,100 is ________% if we are 90% positive that the genuine population mean will be between $1,500 and $2,100.
We have to fill the blank.
We know that,
90% of the time, the real population mean will fall in the range of $1,500 and $2,100.
The genuine population mean will therefore most likely fall between $1,500 and $2,100, with a 90% probability.
So, the probability that it will fall outside of this range (i.e., be either less than $1,500 or beyond $2,100) is 100-90, or 10%.
Therefore, 10% of the time, the population mean will go below $1,500 or exceed $2,100.
To learn more about population visit: https://brainly.com/question/29016981
#SPJ4
2 1/2 divided by 5/2
\(\dfrac{2 \tfrac 12 }{\tfrac 52}\\\\\\\\= \dfrac{\left(\tfrac 5 2\right)}{\left(\tfrac 52 \right) }\\\\\\\\=1\)
What is 0.007 divided by 0.498 to nearest tenth
Answer:
0.0
Step-by-step explanation:
To find 0.007 divided by 0.498, we can perform the following calculation:
0.007 / 0.498 ≈ 0.0141
Rounding this to the nearest tenth gives:
0.0141 ≈ 0.0
Therefore, the result, rounded to the nearest tenth, is 0.0.
help please thank you
Answer:
the second choice :)
Step-by-step explanation:
you can convert both denominators to 20 to enable you to add the two fractions, 4/5 times 4 is 16/20 and 2/4 times 5 is 10/20. 16/20+10/20=26/20
hope this helps!