Answer:
12km
Step-by-step explanation:
1 hour = 8 half hour = 4
8+4=12
Which equation represents the nth term of the sequence {2,1,-4,-7...}.
a n =2n-5
a n=3n-1
a n=-3n-10
a n=-3n+5
Answer:
n=-3n+5
Step-by-step explanation:
Answer:
D
Step-by-step explanation:
I can only answer this if the second term is -1
a = 2
d = -3
t_n = a + (n - 1)*-3
t_n = 2 + -3n + 3
t_n = 5 - 3n or
t_n = - 3n + 5
That's D
One reason for using a distribution instead of the standard Normal curve to find critical values when calculating a level C confidence interval for a population mean is that
(a) z can be used only for large samples.
(b) z requires that you know the population standard deviation θ
.
(c) z requires that you can regard your data as an SRS from the population.
(d) the standard Normal table doesn't include confidence levels at the bottom.
(e) a z critical value will lead to a wider interval than a t critical value.
(b) z requires that you know the population standard deviation θ
.
Therefore , the solution of the given problem of standard deviation comes out to be the group standard deviation in order to use (b) z.
What does standard deviation actually mean?Statistics uses variance as a way to quantify difference. The image of the result is used to compute the average deviation between the collected data and the mean. Contrary to many other valid measures of variability, it includes those pieces of data on their own by comparing each number to the mean. Variations may be caused by willful mistakes, irrational expectations, or shifting economic or business conditions.
Here,
We use the z-distribution if the total standard deviation is known; otherwise, we use the t-distribution.
Additionally, for small sample sizes, the t-distribution is used, whereas for big sample sizes, the z-distribution is used.
The fact that z requires that you know the population standard deviation, and that this is frequently not known in practice, is one reason to use a distribution rather than the traditional .
Normal curve to find critical values when computing a level C confidence interval for a population mean.
You must be aware of the group standard deviation in order to use (b) z.
To know more about standard deviation visit :-
brainly.com/question/13673183
#SPJ1
Please help and answer ASAP please will mark Brainlest
What is the value for x?
Enter your answer in the box.
x =
Answer:
x=45
Step-by-step explanation:
i hope its right good luck :)
i think im wrong
Please help, thanks!
Two adjacent angles are inside a 90° angle. One angle is x+4 and the other angle is 3x+2. What is x?
When in a right angle triangle, the right angle has two angles inside it i.e. x+4° and 3x+2°, x is equal to 21.
what exactly is a triangle?
A triangle is a three-sided polygon, which is a two-dimensional shape with straight sides. It is one of the simplest and most common geometric shapes in mathematics. A triangle is defined by its three sides and three angles.
The total sum of the angles of a triangle is always equal to 180 °. The length of the sides and the size of the angles can vary, giving rise to different types of triangles, such as equilateral, isosceles, scalene, acute, obtuse, and right triangles.
Now,
The sum of two adjacent angles inside a 90° angle is 90°. So, we can set up an equation:
x + 4 + 3x + 2 = 90
Simplifying the left side by combining like terms:
4x + 6 = 90
Subtracting 6 from both sides:
4x = 84
Dividing by 4:
x = 21
Therefore, The value of x is 21.
To know more about triangles visit the link
brainly.com/question/2773823
#SPJ1
do you know the answer?
if you do then put the answer
math math math math math math math
The angle m∠JIX is 90 degrees.
How to find angles in line intersection?IX is perpendicular to IJ. Therefore, angle m∠JIX is 90 degrees.
IG bisect CIJ. Hence,
m∠CIG ≅ m∠GIJ
Therefore,
m∠CIX = 150 degrees
Hence, let's find m∠JIX.
Therefore, m∠JIX is 90 degrees because IX is perpendicular to IJ. Perpendicular lines forms a right angle.
learn more on angles here: brainly.com/question/18854964
#SPJ1
The measure of angle m∠JIX is estimated to be 90⁰.
How to find the angles?You should understand that an angle is a figure formed by two straight lines or rays that meet at a common endpoint, called the vertex.
IX is perpendicular to IJ. Therefore, angle m∠JIX is 90⁰.
Frim the given parameters,
IG⊥CIJ.
But; m∠CIG ≅ m∠GIJ
⇒ m∠CIX = 150⁰
Hence, let's find m∠JIX.
Therefore, m∠JIX is 90⁰ because IX is perpendicular to IJ. Perpendicular lines forms a right angle.
Learn more about bisecting of angles on https://brainly.com/question/23984603
#SPJ1
The distance, in feet, two boys travel per second on a treadmill is shown to the left. Which comparison is accurate?
Xavier is traveling at 1.5 feet per second.
Moises is going faster than Xavier.
The difference in their rates of change is 1 foot per second.
If both boys remain on the treadmill for 10 minutes, Xavier will have traveled a greater distance. (a straight up answer)
Answer:
Step-by-step explanation:
D is correct
Answer: D
Step-by-step explanation:
A repairman charges $55 for a home visit plus $45 per hour for the time he spends making repairs.How many hours did he work if he was paid $212.50 for a home visit ? around to nearest tenth
Answer:
3.5 hours
Step-by-step explanation:
use this linear equation
y = 45x + 55 y is the amount earned and x is the hours worked
plug in 212.50 for y then solve for x
212.50 = 45x + 55
157.5 = 45x
3.5 = x
so he worked for 3.5 hours or 3 hours and 30 minutes
hope this helps <3
What is the answer to all three boxes. Please help
Answer:
Box A: 6 feet
Box B: 16 feet
Box C: 12 feet
Step-by-step explanation:
please i need HELPPP
Answer:
vertex point is (4,-6)
and it opens upwards as the coefficient of x is positive.
I assume B is the correct answer, good luck!
If electricity is billed at a rate of $0.75 per KWH and you used on average 120 KWHs per month, what would you expect to pay each month?
You would expect to pay $90 each month for electricity based on an average usage of 120 KWHs per month.
How to find the expected monthly payTo calculate the monthly cost of electricity, you can multiply the average number of kilowatt-hours (KWH) used per month by the cost per KWH.
Given:
Cost per KWH: $0.75
Average monthly usage: 120 KWHs
To find the monthly cost, you can multiply the cost per KWH by the average monthly usage:
Monthly Cost = Cost per KWH * Average monthly usage
Plugging in the values, we have:
Monthly Cost = $0.75/KWH * 120 KWHs
Calculating the result:
Monthly Cost = $90
Learn more about Monthly Cost at
https://brainly.com/question/24093839
#SPJ1
Evaluate the expression
2+x/3-y, for x=-4 and y=2
Answer:
-2
Step-by-step explanation:
Plug in the values of 'x' and 'y':
\(\frac{2+-4}{3-2} =\frac{2-4}{1} =\frac{-2}{1} =-2\)
Answer: So, the value of the expression 2+x/3-y when x=-4 and y=2 is -4/3.
Step-by-step explanation: To evaluate the expression 2+x/3-y for x=-4 and y=2, we can substitute the values of x and y into the expression. This gives us:
2 + (-4)/3 - 2
Solving this expression following the order of operations, we first solve the division:
2 + (-4/3) - 2
Then we solve the addition and subtraction from left to right:
= 2 - 4/3 - 2
= (6/3) - (4/3) - (6/3)
= -4/3
So, the value of the expression 2+x/3-y when x=-4 and y=2 is -4/3.
A calculator is required to obtain the final answer on this question. A solid metal sphere at room temperature 20oC is dropped into a container of boiling water (100oC). If the temperature of the sphere increases 10o in 9 seconds, find the temperature of the ball after 18 seconds in the boiling water. (Assume the sphere obeys Newton's Law of Cooling.)
Answer:
38.71°C
Step-by-step explanation:
Given :
Initial temp, T0 = 20°C
Final temperature, T = 20 + 10 = 30°C
Time, t = 9 seconds
Surrounding temperature, Ts = 100°C
Newton's Law of cooling :
T = Ts + (T0 - Ts) * e^-kt
Obtain the value of k
30 = 100 + (20 - 100) * e^-9k
30 - 100 = - 80e^-9k
-70 = - 80e^-9k
-70 / - 80 = e^-9k
0.875 = e^-9k
Take the In of both sides
In(0.875) = - 9k
−0.133531 = - 9k
k = 0.133531 / 9
k = 0.0148
Hence,
t = 18
T = Ts + (T0 - Ts) * e^-kt
T = 100 + (20 - 100) * e^-0.0148(18)
T = 100 - 80 * e^-0.0148(18)
T = 100 - 80 * 0.7661326
T = 38.709392
T = 38.71°C
An apple falls off a tree from a height of $36$36 feet.
a. What does the function $h(t)=-16t^2+36$h(t)=−16t2+36 represent in this situation?
BoldItalicUnderlineBullet listNumbered listSuperscriptSubscriptTable
0 / 10000 Word Limit0 words written of 10000 allowed
Question 2
b. Find and interpret the domain of h$h$h in this situation.
BoldItalicUnderlineBullet listNumbered listClear formattingSuperscriptSubscript
a)The term 1-16t²represents the effect of gravity on the apple, which causes it to fall with increasing speed. The constant term 36 represents the initial height of the apple
b)Interpreting the domain, we can say that h(t) makes sense only for non-negative values of t. In other words, we can use the function h(t)to find the height of the apple at any time t a
what is gravity ?
Gravity is a fundamental force of nature that causes objects with mass to attract each other. It is the force that keeps planets in orbit around stars, and stars in orbit around the center of their galaxies.
In the given question,
a. The function h(t)=-16t²+36 represents the height of an apple above the ground at time t after falling off a tree. The term1 -16t² represents the effect of gravity on the apple, which causes it to fall with increasing speed. The constant term 36 represents the initial height of the apple when it fell off the tree.
b. The domain of h(t) in this situation is the set of all possible values of t that make sense in the context of the problem. Since h(t) represents the height of the apple at time t after it fell off the tree, the domain of h(t)is the set of all non-negative real numbers, or [0,\infty) This is because time cannot be negative, and the apple cannot fall for an infinite amount of time.
Interpreting the domain, we can say that h(t)makes sense only for non-negative values of t. In other words, we can use the function h(t) to find the height of the apple at any time t after it fell off the tree, as long as t is non-negative..
To know more about gravity , visit:
https://brainly.com/question/4014727
#SPJ1
Find the missing angle and side measures of Delta*ABC , given that
m angle A = 50 deg , m angle C = 90 deg , and CB = 16
The missing angle is <B= 40 degree and missing side length is AB = 12.25 and AC = 19.068.
To find the missing angle and side measures of ΔABC, we can use the properties of a triangle.
Given:
∠A = 50°
∠C = 90°
CB = 16
We can start by finding the measure of ∠B:
∠A + ∠B + ∠C = 180° (Sum of angles in a triangle)
50° + ∠B + 90° = 180°
∠B + 140° = 180°
∠B = 180° - 140°
∠B = 40°
Now, using Sine law
CB/ sin A = AB / sin C
16 / sin 50 = AB / sin 90
16 / 0.766044 = AB
AB = 12.25
Again 12.25 = AC/ sin B
12.25 = AC / sin 40
AC = 19.068
Learn more about sine law here:
https://brainly.com/question/13098194
#SPJ1
A portion of the quadratic formula proof is shown. Fill in the missing statement
Statements Reasons
x squared plus b over a times x plus the quantity b over 2 times a squared equals negative 4 times a times c all over 4 times a squared plus b squared over 4 a squared Find a common denominator on the right side of the equation
x squared plus b over a times x plus the quantity b over 2 times a squared equals b squared minus 4 times a times c all over 4 times a squared Add the fractions together on the right side of the equation
the quantity x plus b over 2 times a squared equals b squared minus 4 times a times c all over 4 times a squared Rewrite the perfect square trinomial on the left side of the equation as a binomial squared
x plus b over 2 times a equals plus or minus the square root of b squared minus 4 times a times c, all over 4 times a squared Take the square root of both sides of the equation
x plus b over 2 times a equals plus or minus the square root of b squared minus 4 times a times c, all over 2 times a Simplify the right side of the equation
? Subtract the quantity b over 2 times a from both sides of the equation
x equals b plus or minus the square root of b squared minus 4 times a times c, all over 2 times a
x equals negative b plus or minus the square root of b squared minus 4 times a times c, all over a
x equals negative b plus or minus the square root of b squared minus 4 times a times c, all over 2 times a
x plus b over 2 times a equals negative b plus or minus the square root of b squared minus 4 times a times c, all over 2 times a
The missing statement is the quadratic formula and the correct option therefore is the third option;
x equals negative b plus or minus the square root of b squared minus 4 times a times c, all over 2 times aWhat is the quadratic formula?The quadratic formula is used to find the solution of a quadratic equation. The quadratic formula is; \(x = \frac{-b\pm\sqrt{b^2-4\cdot a\cdot c} }{2\cdot a}\)
The statements and reasons can be presented algebraically as follows;
Statements \({}\) Reasons
\(x^2+\frac{b}{a}\cdot x+(\frac{b}{2\cdot a} )^2 = -\frac{4\cdot a\cdot c}{4\cdot a^2}+ \frac{b^2}{4\cdot a^2}\) Find a common denominator on the
right side of the equation
\(x^2 + \frac{b}{a} \cdot x+(\frac{b}{2\cdot a} )^2 = \frac{b^2-4\cdot a \cdot c}{4\cdot a^2}\) Add the fractions together on the
\({}\) right side of the equation
\((x +\frac{b}{2\cdot a} )^2 = \frac{b^2 - 4\cdot a \cdot c}{4\cdot a^2}\) Rewrite the perfect squared equation
\({}\) to the left side of the equation as a
\({}\) binomial squared
\(x + \frac{b}{2\cdot a} = \pm\sqrt{\frac{b^2 - 4\cdot a \cdot c}{4\cdot a^2} }\) Take the square root of both sides of the
\({}\) equation
\(\underline{x = \frac{-b\pm\sqrt{b^2 - 4\cdot a \cdot c} }{2\cdot a}}\) Simplify the right side of the equation
The correct option is therefore;
x equals negative b plus or minus the square root of b squared minus 4 times a times c, all over 2 times aLearn more on the quadratic formula here: https://brainly.com/question/29159682
#SPJ1
Answer:
A
Step-by-step explanation:
i took the test
have a great day :) .!
Can anyone tell me what 2 1/3 as a improper fraction?
Thank you if you can
Answer:
2 1/3 as an improper fraction is 7/3
Answer:
\(\frac{7}{3}\)
Step-by-step explanation:
\(2\frac{1}{3}=\frac{(2*3)+1}{3}\\\\\\ =\frac{6+1}{3}\\\\=\frac{7}{3}\)
Mrs. Adams loves her Honda Element, but the fuel rate is 23 miles per gallon on the highway and is mostly used to commute from her home in Atlanta to school (17 mi, one way). She's been look at used Toyota Priuses on the internet, and can find a reliable used Prius, which has a fuel rate estimating to be 41 miles per gallon, for around $6,500. Given that gas prices currently are averaging $3.00 per gallon, how long will it take for the Prius to pay for itself in gas savings?
Answer:
Hope this helps ;) don't forget to rate this answer !
Step-by-step explanation:
Mrs. Adams commutes 17 miles each way to work, so she travels a total of 17 * 2 = <<172=34>>34 miles per day.
Since the Honda Element gets 23 miles per gallon on the highway, it uses 34 / 23 = 1.48 gallons of gas per day.
At a gas price of $3.00 per gallon, the Honda Element costs 1.48 * 3 = $<<1.483=4.44>>4.44 in gas per day.
The Toyota Prius gets 41 miles per gallon on the highway, so it uses 34 / 41 = 0.83 gallons of gas per day.
At a gas price of $3.00 per gallon, the Toyota Prius costs 0.83 * 3 = $<<0.83*3=2.49>>2.49 in gas per day.
The Toyota Prius costs $2.49 in gas per day, while the Honda Element costs $4.44 in gas per day.
The difference in gas cost between the two vehicles is $4.44 - $2.49 = $1.95 per day.
To pay for itself in gas savings, the Toyota Prius needs to save $6,500 / $1.95 = 3345.38 days of gas.
At a rate of 365 days per year, this is approximately 3345.38 / 365 = <<3345.38/365=9.14>>9.14 years.
Therefore, it will take approximately 9.14 years for the Toyota Prius to pay for itself in gas savings.
An object attached to a coiled spring is pulled down 5 centimeters from its rest position and released. If the motion is simple harmonic in nature, with a period of pi seconds, answer the following questions.
A. what is the maximum displacement form equilibrium of the object?
B. what is the time required for one oscillation?
C. what is the frequency?
D.write an equation to model the motion of the object.
The maximum displacement is 5 centimeters.
The time required for one oscillation is π seconds.
The frequency is 1 / π Hz.
Equation to model the motion of the object is x(t) = 5 × cos(2t)
The maximum displacement from equilibrium can be determined by observing that the object is pulled down 5 centimeters from its rest position.
In simple harmonic motion, the amplitude represents the maximum displacement from equilibrium.
The period of oscillation is given as π seconds.
The period (T) is the time required for one complete oscillation.
The frequency (f) is the reciprocal of the period and represents the number of oscillations per unit time.
Thus, the frequency is the inverse of the period: f = 1 / T.
To model the motion of the object, we can use the equation for simple harmonic motion:
x(t) = A×cos(ωt + φ)
A = 5 centimeters (maximum displacement),
T = π seconds (period),
f = 1 / π Hz (frequency).
To find ω, we can use the relation ω = 2π / T:
ω = 2π / π = 2 radians/second.
The equation to model the motion of the object is:
x(t) = 5 × cos(2t)
To learn more on Displacement click:
https://brainly.com/question/29957379
#SPJ1
how many integers between 2023 and 5757 have 12, 20, and 28 as factors
Answer:
9 integers between 2023 and 5757 that have 12, 20, and 28 as factors.
Step-by-step explanation:
An integer that has 12, 20, and 28 as factors must be divisible by the least common multiple (LCM) of these numbers. The LCM of 12, 20, and 28 is 420. So we need to find the number of integers between 2023 and 5757 that are divisible by 420.
The first integer greater than or equal to 2023 that is divisible by 420 is 5 * 420 = 2100. The last integer less than or equal to 5757 that is divisible by 420 is 13 * 420 = 5460. So the integers between 2023 and 5757 that are divisible by 420 are 2100, 2520, ..., 5460. This is an arithmetic sequence with a common difference of 420.
The number of terms in this sequence can be found using the formula for the nth term of an arithmetic sequence: an = a1 + (n - 1)d, where an is the nth term, a1 is the first term, d is the common difference, and n is the number of terms. Substituting the values for this sequence, we get:
5460 = 2100 + (n - 1)420 3360 = (n - 1)420 n - 1 = 8 n = 9
So there are 9 integers between 2023 and 5757 that have 12, 20, and 28 as factors.
Chris completed a 100-meter breaststroke swimming race in 92.542 seconds.
Michael completed the 100-meter breaststroke swimming race in 95.6 seconds.
How much faster was Chris's time than Michael's?
Answer: C its C
Step-by-step explanation:
GOT DANG JUST READ THE ANSWER ITS CCCCCCCCCCCCCCCCCCCCCCCCCCCCC
I need help with this question
Answer:
5/7
Step-by-step explanation:
ratio of boys to girls---> 2:5
ratio sum: 2+5=7
girls ratio =5/7
OR
total of people in 7th grade choir=28
hence, no of girls in 7th grade choir=5/7 × 28
=20
proportion of girls in choir= 20/28 = 5/7
Is the graph increasing, decreasing, or constant?
A. Decreasing
B. Increasing
C. Constant
PLEASE HELP ME!!!!!
Which of the following is a true statement of the figure?
An image of a triangle ABC. The angle bisector of angle B is ray BD. Point D lies on side AC.
Question 1 options:
A
D
D
C
=
D
C
C
B
A
C
A
B
=
D
B
D
C
A
D
D
C
=
A
B
C
B
B
C
B
A
=
D
C
C
B
Angle ∠EBD is congruent to angle ∠DBA. Option D is the true statement.
What is an angle bisector?An angle bisector is the line segment that bisects the angle into two equal halves.
Orientation of the one line with respect to the horizontal or other respective line is known as a measure of orientation and this measure is known as the angle.
Here,
Ray BE is a bisector of angle CBA,
∠CBE = ∠EBA = 60°
∠EBD = ∠EBA - ∠DBA
∠EBD = 60 - 30 = 30
So,
∠EBD = ∠DBA [DB becomes angle bisector of angle EBA]
Thus, ∠EBD is congruent with ∠DBA is the only correct answer among the option.
Learn more about True Statement at:
https://brainly.com/question/30414310
#SPJ1
Full Question:
Although part of your question is missing, you might be referring to this full question:
Which of the following statements is true if ray BE is a bisector of angle CBA?
A. Ray BD is a bisector of angle CBA.
B. ∠EBD is congruent to ∠CBE.
C. Ray BE is a bisector of angle ABE.
D. ∠EBD is congruent to ∠DBA.
Suppose f(x) = x2 – 3x – 9 and g(x) = 2x3. What is the value ofg(8)+f(-3)?
We have the following functions:
\(\begin{gathered} f(x)=x^2-3x-9 \\ g(x)=2x \end{gathered}\)We need to find g(8) + f(-3). The expression g(8) is equivalent to replace 8 in the place of x, that is,
\(\begin{gathered} g(8)=2(8) \\ \text{then, } \\ g(8)=16 \end{gathered}\)Similarly, f(-3) is given by
\(f(-3)=(-3)^2-3(-3)-9\)which gives
\(\begin{gathered} f(-3)=9+9-9 \\ f(-3)=9 \end{gathered}\)Therefore, g(8)+f(-3) is given by
\(g\mleft(8\mright)+f\mleft(-3\mright)=16+9\)so the answer is 25
Which one ? Quick please !!!!
Answer:
It should be A or B
Hope this helps!
Step-by-step explanation:
Answer:
D
Step-by-step explanation:
It is the only one decreasing in bugs with more pesticide
HELP ME PLZ ASAPPPPPP
Answer:
\((x,y) =(-4,-3)\) --- Vertex
\(x = -4\) --- Axis of symmetry
Step-by-step explanation:
Given
\(y = -6(x + 4)^2 - 3\)
Solving (a): The vertex
For an equation written in
\(y = a(x - h)^2 + k\)
The vertex is:
\((x,y) = (h,k)\)
By comparison:
\(y = a(x - h)^2 + k\) and \(y = -6(x + 4)^2 - 3\)
\(-h =4\) \(k = -3\)
\(h =-4\) \(k = -3\)
So, the vertex is:
\((x,y) =(-4,-3)\)
Solving (b): The axis of symmetry
For an equation written in
\(y = a(x - h)^2 + k\)
The axis of symmetry is:
x = h
In (a):
\(h =-4\)
So:
\(x = -4\)
Principal amount: $1,000
Interest rate: 10%
Time: 12 months
The Simple Interest on Principal amount: $1,000 is $100.
What is Simple Interest?Simple interest is, by definition, the amount of interest paid on a specific principal sum of money when an interest rate is applied.
Given:
Principal amount: $1,000
Interest rate: 10%
Time: 12 months
So, the Simple Interest
= P x R x T/100
= 1000 x 10 x 1 / 100
= 10000/100
= $100
and, Amount = P + I
Amount = $1100
Learn more about Simple Interest here:
https://brainly.com/question/25845758
#SPJ1
There are 16 ounces in 1 pound, so the expression z/16, where z represents the number of ounces, can be used to find the number of pounds for any given number of ounces. How many pounds are in 40 ounces?
Answer:
40 ounces is equal to 2.5 pounds------------------------
Use the given expression z/16, substitute z with 40 and calculate:
z/16 = 40/16 = 2.5 pounds