The value of 8 cubed times 8 Superscript negative 5 Baseline times 8 Superscript negative 2 Baseline is 8³ × 8 ⁻⁵ × 8⁻² = 1 / 8⁴ or Start Fraction 1 Over 8 superscript 4 End Fraction.
What is multiplication?One of the four fundamental mathematical operations, along with addition, subtraction, and division, is multiplication. Multiply in mathematics refers to the continual addition of sets of identical sizes.
Given:
8 cubed times 8 Superscript negative 5 Baseline times 8 Superscript negative 2 Baseline,
Write the above phrase in the mathematical form as shown below,
8³ × 8 ⁻⁵ × 8⁻²
Simplify the above expression as shown below,
8³ × 8 ⁻⁵ × 8⁻² = 8³ / (8 ⁵ × 8²)
8³ × 8 ⁻⁵ × 8⁻² = 8³ / 8⁵ ⁺ ²
8³ × 8 ⁻⁵ × 8⁻² = 8³ / 8⁷
8³ × 8 ⁻⁵ × 8⁻² = 1 / 8⁴
8³ × 8 ⁻⁵ × 8⁻² = 8⁻⁴
Thus, the value of 8³ × 8 ⁻⁵ × 8⁻² is 8⁻⁴.
To know more about multiplication:
https://brainly.com/question/1135170
#SPJ1
if the margin of error in an interval estimate of μ is 4.6, the interval estimate equals _____.
If the margin of error is 4.6, the interval estimate would be the point estimate plus or minus 4.6.
In statistical estimation, the margin of error represents the maximum amount by which the point estimate may deviate from the true population parameter. It provides a measure of the precision or uncertainty associated with the estimate. When constructing a confidence interval, the margin of error is used to determine the range within which the true parameter is likely to fall.
To obtain the interval estimate, we add and subtract the margin of error from the point estimate. Let's denote the point estimate as x bar. Therefore, the interval estimate can be expressed as X bar ± 4.6, where ± denotes the range above and below the point estimate.
In summary, if the margin of error in an interval estimate of μ is 4.6, the interval estimate is given by the point estimate plus or minus 4.6. This range captures the likely range of values for the true population parameter μ.
Learn more about margin of error here:
https://brainly.com/question/31950158
#SPJ11
write the equation of the circle graph below?????
Answer:
(x+2)^2 + (y+2)^2 = 0.75^2
Step-by-step explanation:
equation of a circle in standard form: (x-h)^2 + (y-k)^2 = r^2
center: (-2, -2)
radius: 0.75
equation of the circle in provided graph: (x+2)^2 + (y+2)^2 = 0.75^2
How do you find a formula for the general term an of the sequence?
A sequence is characterised as one that adheres to a predetermined pattern. The following term is created by increasing or decreasing the previous word by a certain amount.
On occasion, an expression is followed by every term in the series. The general formula for an AP is T n = a + (n - 1) d.
What does the sequence's general word mean?Understanding the underlying pattern or rule that creates the sequence is necessary for formulating the general term an of the sequence. Finding a formula for the overall term of a series can be done in a number of ways, including:
1) Finding a pattern: In some cases, a pattern can be found by examining the terms of the sequence and looking for a common ratio or difference. For instance, the formula for the general term can be written as a = a1 + (n - 1)d, where a1 is the first term and d is the common difference, assuming the terms of a sequence are rising by a constant amount.
2) Recurrence relations are used to characterise some sequences. These relations define the nth term in terms of the phrases that came before it. If the recurrence relation, for instance, is a = an-1 + an-2, then the general term's formula can be discovered by resolving the recurrence relation.
3) Making use of generating functions: Sequences can be represented mathematically using generating functions. A formula for the general term of a sequence can be discovered by fiddling with the generating function.
To know more about general term an of the sequence visit,
brainly.com/question/24176896
#SPJ4
How would the graph of the function y=x^2-8 be affected if the function were changed to y=x^2-3
The standard method for a graph is :
0. f(x) + n - shift the graph n units up
,1. f(x) - n - shift the graph n units down
,2. f(x - n) - shift the graph n units to the right
,3. f(x + n) - shift the graph n units to the left
Since from the given equation we have graph y = x^2-8
to make it y= x^2 -3
add 5 on the both side of equation y = x^2-8
y = x^2-8
y + 5 = x^2 - 8 + 5
y + 5 = x^2 - 3
From the above condition (1),
The graph y + 5 = x^2 - 3 will moves 5 units up
Answer : The graph y = x^2 - 3 will moves 5 units up
does someone mind helping me with this problem? Thank you!
Answer:
\(y=\dfrac{\boxed{1}}{\boxed{2}}\:x+\boxed{4}\)
Step-by-step explanation:
\(\boxed{\begin{minipage}{6.3 cm}\underline{Slope-intercept form of a linear equation}\\\\$y=mx+b$\\\\where:\\ \phantom{ww}$\bullet$ $m$ is the slope. \\ \phantom{ww}$\bullet$ $b$ is the $y$-intercept.\\\end{minipage}}\)
Therefore, the slope of the given line y = -2x + 5 is -2.
If two lines are perpendicular to each other, their slopes are negative reciprocals.
Therefore, the slope of a perpendicular line ¹/₂.
\(\boxed{\begin{minipage}{5.8 cm}\underline{Point-slope form of a linear equation}\\\\$y-y_1=m(x-x_1)$\\\\where:\\ \phantom{ww}$\bullet$ $m$ is the slope. \\ \phantom{ww}$\bullet$ $(x_1,y_1)$ is a point on the line.\\\end{minipage}}\)
Substitute the found slope and point (-4, 2) into the point-slope formula:
\(\implies y-2=\dfrac{1}{2}(x-(-4))\)
Rearrange to slope-intercept form:
\(\implies y-2=\dfrac{1}{2}(x+4)\)
\(\implies y-2=\dfrac{1}{2}x+2\)
\(\implies y=\dfrac{1}{2}x+4\)
what is a perfect square trinomial and can you provide an example
A perfect square trinomial is a trinomial that factors as two identical binomials.
For example, x² + 8x + 16 factors as (x + 4)(x + 4) or (x + 4)².
Another example would be x² - 12x - 36 which factors as (x - 6)².
I need help really bad
Answer:A b and ddI just know
Step-by-step explanation:
Suppose you have 10 black, 10 white, 10 blue, and 10 brown
socks. How many socks to pick (blindly, since there is no light in
the room) so that all 3 brothers wear the same color socks
Suppose you have 10 black, 10 white, 10 blue, and 10 brown socks. The minimum number of socks to pick that all 3 brothers wear the same color socks is 4 of the same color.
You are required to determine how many socks to pick blindly since there is no light in the room so all three brothers wear the same color socks. In this question, we have 4 types of socks. Therefore, we can apply Pigeonhole Principle here. Pigeonhole Principle states that If n+1 items are put into n boxes, then at least one box must contain two or more items.
Assuming that a brother needs to wear 3 socks of the same color. Therefore, for all 3 brothers to wear the same color socks, we must pick 4 socks of the same color. Therefore, the minimum number of socks that needs to be picked = 4.
You can learn more about Pigeonhole Principle at: brainly.com/question/31687163
#SPJ11
Which point is the best approximation of the relative maximum of the
polynomial function graphed below?
30
25
20
15
10
5
4
2
10
5
-10
15
-20
25
-30
-50-
Answer:
D
Step-by-step explanation:
your maximum "point" of the polynomial is the highest point that the curve makes which in this case is around x=-3.6 and y=17
The point of maxima for the given function is (-3.6, 17).
What is a function?A function y = f(x) is a one to one relationship between two sets X and Y where the set X is called the domain and Y the range of function f(x) ans x ∈ X and y ∈ Y.
As per the graph of the function following conclusion are as below,
It has a maxima in second quadrant.
After the point of maxima, its value starts to decrease.
Then, it reaches it lowest value in fourth quadrant after which it increases again.
By examining the given options, the correct point of maxima can be found as (-3.6, 17).
Hence, the point of relative maxima for the graph can be evaluated as (-3.6, 17).
To know more about function click on,
https://brainly.com/question/21145944
#SPJ2
can someone answer these 2 questions
the sum of the interior angle of a regular polygon is 1080
find the number of sides of the polygon
Answer:
8 sides
Step-by-step explanation:
(n-2)×180=1080
180n-360=1080
180n=1080+360
180n=1440
n=1440/180
n=8 sides
it's an octagon
Answer:
It has 8 sides
Step-by-step explanation:
This is because the formula is 180(n-2) where n is the amount of sides. An octagon has 8 sides so the sum of the angles is 180(8-2)=180(6)=180×6=1080 degrees
Hope that helps :)
Sam's preferences over cake, c, and money, m, can be represented by the utility function.
u(c,m)=c+m+μ(c-rc)+μ(m-rm)
where rc is his cake reference point, rm is his money reference point, and the function μ(⋅) is defined as
μ(z)={z z ≥ 0
{vz z < 0
where v > 0
1. If his reference point is the status quo (that is, his initial endowment), what is the maximum price Sam would be willing to pay to buy a cake?
2. If his reference point is the status quo, what is the minimum price Sam would be willing to accept to sell a cake he already owned?
3. If his reference point is the status quo, what is the minimum amount of money Sam would be willing to accept instead of receiving a cake (that he did not already own)? In other words, if Sam were a "chooser," how much money would he demand to compensate for not accepting a cake?
4. Find a condition on λ such that we can say that Sam exhibits the endowment effect.
Sam's maximum willingness to pay to buy a cakeIf the reference point is the status quo, Sam's utility function is given by;u(c,m) = c + m + μ(c - rc) + μ(m - rm)The marginal utility of a good is its derivative, thus.
∂u/∂c = 1 + μ′(c - rc)∂u/∂m
= 1 + μ′(m - rm)The maximum amount Sam is willing to pay to buy a cake will occur where the marginal utility of the cake is equal to the price. That is;∂u/∂c = 0⇒ 1 + μ′(c - rc)
= 0⇒ μ′(c - rc)
= -1⇒ c - rc
= -1/μ′Since μ(z) is decreasing and convex, we haveμ′(z) ≤ 0, μ′′(z) ≥ 0Hence, if the reference point is the status quo, Sam will not buy a cake whose price is more than rc.2. Sam's minimum willingness to accept to sell a cakeIf Sam wants to sell his cake, he would do so for a price that would give him at least as much utility as eating the cake himself.
That is;∂u/∂c = 0⇒ 1 + μ′(c - rc)
= 0⇒ μ′(c - rc)
= -1⇒ c - rc
= -1/μ′Therefore, the minimum amount that Sam will be willing to accept to sell his cake is rc - 1/μ′.3. Sam's minimum compensation in moneyIf Sam is offered a cake, then the minimum amount of money he will accept in exchange for the cake would be such that the utility from the money is at least as much as the utility from the cake. That is;u(c,m) = u(c, m')⇒ c + m + μ(c - rc) + μ(m - rm)
= c + m' + μ(c - rc) + μ(m' - rm)⇒ m - m'
= μ-1[μ(m' - rm) - μ(m - rm)]Thus, the minimum amount of money that Sam would demand in compensation for not accepting the cake would be given by m - μ-1[μ(m' - rm) - μ(m - rm)].4. The endowment effectSam exhibits the endowment effect when his willingness to sell his cake is less than his willingness to buy the same cake.
The endowment effect occurs when people demand more to give up a good than they are willing to pay to acquire the same good.Let λ be the marginal utility of money. Sam's willingness to pay for a cake can be expressed as;∂u/∂c = 1 + μ′(c - rc)
= 0⇒ μ′(c - rc)
= -1⇒ c - rc
= -1/μ′The willingness to sell the cake will be given by the minimum amount that Sam will accept for the cake, which is;∂u/∂c = 1 + μ′(c - rc)
= 0⇒ μ′(c - rc)
= -1⇒ c - rc
= -1/μ′Hence, Sam exhibits the endowment effect when;rc - 1/μ′ < rc + 1/λ, μ′ < λ.
To know more about status visit:
https://brainly.com/question/31113144
#SPJ11
If the product of the two roots of the equation : (k - 2) x2 - 6 X + 12 = 0 is 3, then k =
(a) zero
(b) 4
(c) 6
(d) 38
Answer:
(c)
Step-by-step explanation:
Given a quadratic equation in standard form
ax² + bx + c = 0
Then the product of the roots = \(\frac{c}{a}\)
(k - 2)x² - 6x + 12 = 0 ← is in standard form
with a = k - 2 and c = 12 , thus
\(\frac{12}{k-2}\) = 3 ( multiply both sides by (k - 1) )
12 = 3(k - 2) = 3k - 6 ( add 6 to both sides )
18 = 3k ( divide both sides by 3 )
6 = k → (c)
Use the Laplace transform to solve the given initial-value problem. y ′
+y=f(t),y(0)=0, where f(t)={ 0,
5,
0≤t<1
t≥1
The solution to the given initial-value problem is \(\(y(t) = 5 - 5e^{-t}\)\).
To solve the initial-value problem using the Laplace transform, we will apply the Laplace transform to both sides of the given differential equation and then solve for the transformed variable. Let's denote the Laplace transform of the function \(y(t)\) as \(Y(s)\) and the Laplace transform of the function \(f(t)\) as \(F(s)\).
Applying the Laplace transform to the differential equation \(y' + y = f(t)\), we have:
\[sY(s) - y(0) + Y(s) = F(s)\]
Substituting the initial condition \(y(0) = 0\), we simplify the equation to:
\[sY(s) + Y(s) = F(s)\]
Factoring out \(Y(s)\), we obtain:
\[(s + 1)Y(s) = F(s)\]
Now, let's express the function \(f(t)\) in terms of its Laplace transform \(F(s)\) using the given piecewise definition:
\[f(t) = \begin{cases} 0, & \text{if } 0 \leq t < 1 \\ 5, & \text{if } t \geq 1 \end{cases}\]
Taking the Laplace transform of \(f(t)\), we have:
\[F(s) = \int_0^\infty f(t)e^{-st}dt = \int_0^1 0 \cdot e^{-st} dt + \int_1^\infty 5 \cdot e^{-st} dt\]
Simplifying the integral, we get:
\[F(s) = \int_1^\infty 5 \cdot e^{-st} dt = \left[ -\frac{5}{s} \cdot e^{-st} \right]_1^\infty = -\frac{5}{s} \cdot e^{-s} + \frac{5}{s}\]
Substituting \(F(s)\) back into the previous equation, we have:
\[(s + 1)Y(s) = -\frac{5}{s} \cdot e^{-s} + \frac{5}{s}\]
Solving for \(Y(s)\), we get:
\[Y(s) = \frac{-\frac{5}{s} \cdot e^{-s} + \frac{5}{s}}{s + 1} = \frac{5}{s(s + 1)} - \frac{5e^{-s}}{s(s + 1)}\]
Now, we can find the inverse Laplace transform of \(Y(s)\) to obtain the solution \(y(t)\). Using partial fraction decomposition, we can rewrite \(Y(s)\) as:
\[Y(s) = \frac{A}{s} + \frac{B}{s + 1}\]
Solving for \(A\) and \(B\), we find that \(A = 5\) and \(B = -5\).
Taking the inverse Laplace transform, we have:
\[y(t) = \mathcal{L}^{-1}\left\{Y(s)\right\} = 5 - 5e^{-t}\]
Therefore, the solution to the given initial-value problem is \(y(t) = 5 - 5e^{-t}\).
Learn more about solution here
https://brainly.com/question/24644930
#SPJ11
Two points are:
A. always collinear and always coplanar.
B. always collinear and sometimes coplanar.
C. sometimes collinear and sometimes coplanar.
D. sometimes collinear and never coplanar.
please tell me what is (7+3x)4
Answer:
28+12x
Step-by-step explanation:
Multiply 7 with 4
Multiply 3x with 4
Answer:
28+12x
im pretty sure that is right
how can pascal's triangle be useful in finding probabilities? 30 point for thisss I need help
Answer: The coefficients of binomial expansions are calculated using Pascal's triangle.
–3d = 5.7
ANSWER ASAP!!!!!!!!!!
Answer:
D = 1.9
You can find for d by using the associative property of division (divide instead of multiply):
5.7 divided -3 = 1.9
Step-by-step explanation:
Hope it helps! =D
A digital video recorder (DVR) records television shows on an internal hard drive. To use a DVR, you need a subscription with a DVR service company. Two companies advertise their charges for a DVR machine and subscription service.
For what number of months will consumer pay less for the machine and subscription at easy electronics than at cable solutions
The consumer will pay less for the machine and a subscription at easy electronics then I have cable solutions if the customer uses .......... months or more
Will give brainliest
Answer: 23.333
Step-by-step explanation:
Look at the photo for explanation and answer
Add or subtract.
4 /√5 - √3 - 4 /√5+√3
The solution of expression is,
⇒ \(\frac{4}{\sqrt{5} - \sqrt{3} } - \frac{4}{\sqrt{5} + \sqrt{3}}\) = 2 (2√3)
We have to give that,
An expression to solve,
⇒ \(\frac{4}{\sqrt{5} - \sqrt{3} } - \frac{4}{\sqrt{5} + \sqrt{3}}\)
Now, Simplify the expression by adding or subtraction as,
⇒ \(\frac{4}{\sqrt{5} - \sqrt{3} } - \frac{4}{\sqrt{5} + \sqrt{3}}\)
Take 4 as common,
⇒ 4 (\(\frac{1}{\sqrt{5} - \sqrt{3} } - \frac{1}{\sqrt{5} + \sqrt{3}}\))
⇒ 4 (√5 + √3)- (√5 - √3) / (5 - 3)
⇒ 4 (√5 + √3 - √5 + √3) / 2
⇒ 2 (2√3)
Therefore, The solution is,
⇒ \(\frac{4}{\sqrt{5} - \sqrt{3} } - \frac{4}{\sqrt{5} + \sqrt{3}}\) = 2 (2√3)
To learn more about subtraction visit:
https://brainly.com/question/17301989
#SPJ4
Help with this ASP I’ll give best awards for revision I’m stuck
It’s substitution
Answer:
P= 3w + D; d=p−3
I will solve the second part rn
Is -5/3 rational or irratuonal
Cindy is making a paste. For every 1 1/8 cups of water she uses 2 5/8 of flour. How much flour does Cindy need for each cup of flour?
Answer:
0.43 cup of water
Step-by-step explanation:
We know
For every 1 1/8 cups of water, she uses 2 5/8 of flour.
1 1/8 = 9/8 = 1.125
2 5/8 = 21/8 = 2.625
How much water does Cindy need for each cup of flour?
1.125 divided by 2.625 = 0.43 cup of water
So, Cindy needs 0.43 cup of eater for each cup of flour
What is the distance between point (-1,8) and (-3,3)
Answer:
C= 5.4
Step-by-step explanation:
Rise: 5
Run: 2
a²+b²=c²
c=√a²+b²
c=√rise²+run²
c=√5²+2²
c=√25+4
c=√29
c=5.385164807
c=5.4
*c=hypothesis
a right triangle has sides that measure 24 and 32, but the length of the hypotenuse is unknown. what is the perimeter measurement of this triangle? round your answer to the nearest hundredth
The perimeter of the triangle is 96, rounded to the nearest hundredth.
To calculate the perimeter of the triangle, we need to first calculate the length of the hypotenuse.
The hypotenuse of a right triangle is calculated using the Pythagorean theorem, which states that the square of the hypotenuse is equal to the sum of the squares of the two sides.
Therefore, for this triangle, we have:
(Hypotenuse)² = (24)² + (32)²
Therefore, the Hypotenuse = √(24² + 32²)
Hypotenuse = √(576 + 1024)
Hypotenuse = √1600
Hypotenuse = 40
To calculate the perimeter, we need to add up all three sides of the triangle.
the perimeter = 24 + 32 + 40
the perimeter = 96
Therefore, the perimeter of the triangle is 96, rounded to the nearest hundredth.
Learn more about right triangle here:
https://brainly.com/question/29285631
#SPJ4
A principal of $4,570 is placed in an account that earns 4. 5% interest. If the interest is compounded annually, how much money will be in the account at the end of 5 years? a. $4,654. 15 b. $4,775. 65 c. $5,638. 75 d. $5,695. 05 Please select the best answer from the choices provided A B C D.
\(~~~~~~ \textit{Compound Interest Earned Amount} \\\\ A=P\left(1+\frac{r}{n}\right)^{nt} \quad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{original amount deposited}\dotfill &\$4570\\ r=rate\to 4.5\%\to \frac{4.5}{100}\dotfill &0.045\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{annually, thus once} \end{array}\dotfill &1\\ t=years\dotfill &5 \end{cases} \\\\\\ A=4570\left(1+\frac{0.045}{1}\right)^{1\cdot 5}\implies A=4570(1.045)^5\implies A\approx 5695.05\)
Answer:
The correct answer is D.
Step-by-step explanation:
$5695.05
Albert collected 1/2 of a bin of glass bottles to recycle. Kate collected 5 1/2 times as many bins as Albert. How many bins of bottles did Kate collect?
Hence, Kate collected 11/4 bins of bottles.
gather, collect, assemble, congregate mean to come or bring together into a group, mass, or unit. gather is the most general term for bringing or coming together from a spread-out or scattered state. collect often implies careful selection or orderly arrangement.
Albert collected 1/2 of a bin of glass bottles to recycle. Kate collected 5 1/2 times as many bins as Albert. How many bins of bottles did Kate collect?
Albert collected 1/2 bin of glass bottles to recycle.The number of bins Kate collected is represented by b. Kate collected 5 1/2 times as many bins as Albert, so:b = 5 1/2(1/2)Multiplying both sides by 2 gives:b × 2 = 11/2 b
Simplifying the left side gives:2b = 11/2
Multiplying both sides by 1/2 gives:
b = 11/4
To know more about collect:
https://brainly.com/question/32777865
#SPJ11
f (x)=3x-5 find f (2)
The value of the function f(x) = 3x - 5 when x = 2 is f(2) = 1
What is a function?A function is a mathematical equation that shows the relationship between two variables.
How to find the value of the function?Given the function f(x) = 3x - 5, we desire to find f(2).
To find f(2), we substitute x = 2 into the equation. So, we have that
f(x) = 3x - 5. So substituting x = 2 into the equation, w ehave
f(2) = 3(2) - 5
f(2) = 6 - 5
f(2) = 1
So, the value of the function f(x) = 3x - 5 when x = 2 is f(2) = 1
Learn more about functions here:
https://brainly.com/question/25638609
#SPJ1
1/5 de los animales en el zoológico son monos 5/7 de los monos son machos
¿Qué fracción de los animales en el zoológico son monos machos?
1/7 of the animals in the zoo are male monkeys.
What fraction of the animals in the zoo are male monkeys? Explain with workings.
To find the fraction of animals in the zoo that are male monkeys, we have to calculate the product of the fractions representing the proportion of monkeys and the proportion of male monkeys among them.
Given that 1/5 of the animals in the zoo are monkeys, we will then represent this as:
= 1/5
= 5/25.
And 5/7 of the monkeys are male which is written as 5/7.
To get fraction of male monkeys, we will multiply these two fractions:
= (5/25) * (5/7)
= 25/175
= 1/7.
Full question:
1/5 of the animals in the zoo are monkeys 5/7 of the monkeys are male. What fraction of the animals in the zoo are male monkeys?
Read more about fraction
brainly.com/question/17220365
#SPJ1
What is the value of e
Answer:
E = 27.125
Step-by-step explanation:
Hope this helps you.
Answer:
e=56
Step-by-step explanation:
since the denominator is 8, what can you divide by 8 to get something that you can add to 23 and get 30.
30-23=7
56//8=7